Luo Xiao, Hu Bin, Zhou Shuyi, Wu Qiuwen, Geng Chen, Zhao Lingxiao, Li Yuxin, Di Ruoyu, Pu Jian, Geng Daoying, Yang Liqin
Academy for Engineering and Technology, Fudan University, Shanghai, China (X.L., D.G.).
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China (B.H., S.Z., Y.L., R.D., D.G., L.Y.).
Acad Radiol. 2025 Jul 23. doi: 10.1016/j.acra.2025.07.009.
Diagnosis of carotid plaques from head and neck CT angiography (CTA) scans is typically time-consuming and labor-intensive, leading to limited studies and unpleasant results in this area. The objective of this study is to develop a deep-learning-based model for detection and segmentation of carotid plaques using CTA images.
CTA images from 1061 patients (765 male; 296 female) with 4048 carotid plaques were included and split into a 75% training-validation set and a 25% independent test set. We built a workflow involving three modified deep learning networks: a plain U-Net for coarse artery segmentation, an Attention U-Net for fine artery segmentation, a dual-channel-input ConvNeXt-based U-Net architecture for plaque segmentation, and post-processing to refine predictions and eliminate false positives. The models were trained on the training-validation set using five-fold cross-validation and further evaluated on the independent test set using comprehensive metrics for segmentation and plaque detection.
The proposed workflow was evaluated in the independent test set (261 patients with 902 carotid plaques) and achieved a mean dice similarity coefficient (DSC) of 0.91±0.04 in artery segmentation, and 0.75±0.14/0.67±0.15 in plaque segmentation per artery/patient. The model detected 95.5% (861/902) plaques, including 96.6% (423/438), 95.3% (307/322), and 92.3% (131/142) of calcified, mixed, and soft plaques, with less than one (0.63±0.93) false positive plaque per patient on average.
This study developed an automatic detection and segmentation deep learning-based CAP-Net for carotid plaques using CTA, which yielded promising results in identifying and delineating plaques.
从头部和颈部CT血管造影(CTA)扫描中诊断颈动脉斑块通常既耗时又费力,导致该领域的研究有限且结果不理想。本研究的目的是开发一种基于深度学习的模型,用于使用CTA图像检测和分割颈动脉斑块。
纳入了1061例患者(男性765例;女性296例)的CTA图像,其中有4048个颈动脉斑块,并将其分为75%的训练验证集和25%的独立测试集。我们构建了一个工作流程,涉及三个经过修改的深度学习网络:用于粗略动脉分割的普通U-Net、用于精细动脉分割的注意力U-Net、基于双通道输入ConvNeXt的U-Net架构用于斑块分割,以及后处理以优化预测并消除假阳性。模型在训练验证集上使用五折交叉验证进行训练,并在独立测试集上使用用于分割和斑块检测的综合指标进行进一步评估。
在独立测试集(261例患者,902个颈动脉斑块)中对所提出的工作流程进行了评估,动脉分割的平均骰子相似系数(DSC)为0.91±0.04,每个动脉/患者的斑块分割DSC为0.75±0.14/0.67±0.15。该模型检测到了95.5%(861/902)的斑块,包括96.6%(423/438)的钙化斑块、95.3%(307/322)的混合斑块和92.3%(131/142)的软斑块,平均每位患者的假阳性斑块少于1个(0.63±0.93)。
本研究开发了一种基于深度学习的自动检测和分割颈动脉斑块的CAP-Net,使用CTA,在识别和描绘斑块方面取得了有前景的结果。