Tarkas Hemant, Kandivkar Dhanashree, Rokade Abhilasha, Waman Vaishali, Pardhi Narendra, Vairale Priti, Patole Shashikant P, Jadkar Sandesh
Department of Physics, Savitribai Phule Pune University, Pune, 411 007, India.
R. C. Patel Institute of Technology, Shirpur, 425405, India.
Sci Rep. 2025 Jul 24;15(1):26993. doi: 10.1038/s41598-025-12559-6.
This study reports the successful extracellular biosynthesis of lead sulfide (PbS) nanoparticles using non-motile, Gram-variable Micrococcus luteus bacteria. Optimization studies revealed optimal growth conditions for bacterial biomass and PbS production at room temperature, pH 7, and 96 h of incubation. The influence of precursor concentration on the growth and properties of PbS nanostructures was investigated. Characterization techniques, including X-ray diffraction, scanning electron microscopy, and FTIR spectroscopy, confirmed the formation of spherical, pure-phase PbS nanoparticles with sizes ranging from 150 to 250 nm. UV-visible absorption spectroscopy demonstrated strong absorption in the near-infrared region, indicative of the bandgap of PbS. Furthermore, an increase in precursor concentration resulted in a blue shift of the band gap. Utilizing these biogenic PbS nanoparticles, a high-performance photodetector device was fabricated with the architecture FTO/TiO/PbS/PANI/NiS/VO/Pt. The device exhibited excellent stability and repeatability in ON-OFF switching cycles, with a high detectivity of 30.9 × 10 Jones and fast response times of 0.94 s (rise time) and 0.478 s (decay time). These findings demonstrate the potential of biogenic PbS nanoparticles for developing high-performance optoelectronic devices.
本研究报告了使用不运动的革兰氏可变藤黄微球菌成功进行硫化铅(PbS)纳米颗粒的细胞外生物合成。优化研究揭示了在室温、pH值为7以及培养96小时的条件下,细菌生物量和PbS产量的最佳生长条件。研究了前驱体浓度对PbS纳米结构生长和性质的影响。包括X射线衍射、扫描电子显微镜和傅里叶变换红外光谱在内的表征技术证实,形成了尺寸范围为150至250纳米的球形纯相PbS纳米颗粒。紫外可见吸收光谱表明在近红外区域有强烈吸收,这表明了PbS的带隙。此外,前驱体浓度的增加导致带隙蓝移。利用这些生物合成的PbS纳米颗粒,制造了具有FTO/TiO/PbS/PANI/NiS/VO/Pt结构的高性能光电探测器器件。该器件在开-关切换循环中表现出优异的稳定性和重复性,具有30.9×10琼斯的高探测率以及0.94秒(上升时间)和0.478秒(衰减时间)的快速响应时间。这些发现证明了生物合成的PbS纳米颗粒在开发高性能光电器件方面的潜力。