Suppr超能文献

结合全基因组测序和非适应性分组测试进行大规模种族筛查。

Combining whole genome sequencing and non-adaptive group testing for large-scale ethnicity screens.

作者信息

Avraham Elior, Shental Noam

机构信息

Department of Computer Science, The Open University of Israel, Raanana, Israel.

出版信息

BMC Bioinformatics. 2025 Jul 24;26(1):192. doi: 10.1186/s12859-025-06192-3.

Abstract

BACKGROUND

Estimating an individual's ethnicity from genetic data is crucial for analyzing disease association studies, making informed medical decisions, conducting forensic investigations, and tracing genealogical ancestry.

RESULTS

This work combines non-adaptive group testing using the mathematical field of compressed sensing and standard short-read sequencing to allow an up to 4-fold increase in the number of samples in large-scale ethnicity estimates. The method requires no prior knowledge regarding the tested individuals and provides almost identical results compared to testing each individual independently. Our results are based on simulated data, and on simulations based on experimental data from the 1000 Genomes Project and the Human Genome Diversity Project.

CONCLUSIONS

Our computational approach aims to reduce the costs of large-scale ancestry testing by up to 4-fold in many real-life scenarios while not compromising accuracy. We hope this method will allow more efficient large-scale ethnicity screenings.

摘要

背景

从基因数据中估计个体的种族对于分析疾病关联研究、做出明智的医疗决策、进行法医调查以及追溯族谱血统至关重要。

结果

这项工作将使用压缩感知数学领域的非自适应分组测试与标准短读长测序相结合,在大规模种族估计中使样本数量最多增加4倍。该方法不需要关于被测个体的先验知识,并且与独立测试每个个体相比,能提供几乎相同的结果。我们的结果基于模拟数据,以及基于千人基因组计划和人类基因组多样性计划实验数据的模拟。

结论

我们的计算方法旨在在许多实际场景中将大规模血统测试的成本降低多达4倍,同时不影响准确性。我们希望这种方法将实现更高效的大规模种族筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验