Xiao Zhiguo, Shen Qi, Li Changgen, Li Dongni, Liu Qian
School of Computer Science & Technology, Beijing Institute of Technology, Beijing, 100811, China.
College of Computer Science and Technology, Changchun University, Changchun, 130022, China.
Sci Rep. 2025 Jul 25;15(1):27098. doi: 10.1038/s41598-025-12261-7.
Traffic prediction, as a core technology of Intelligent Transportation Systems, plays a pivotal role in dynamic road network optimization and urban travel planning. However, the complex spatiotemporal characteristics of transportation networks pose significant challenges to precisely capturing their dynamic patterns. Existing methods predominantly rely on predefined static adjacency matrices and employ separate processing of spatial and temporal features, failing to adequately explore the intrinsic coupling relationships between them. To address these limitations, we propose an adaptive spatiotemporal dynamic graph convolutional network (AST-DGCN) for traffic prediction. Under the encoder-decoder architecture, the proposed model leverages node embedding techniques to extract high-dimensional features, generating time-evolving adaptive graphs through self-attention mechanisms. Concurrently, the model synergistically integrates dynamic graphs with gated recurrent units to achieve joint modeling of complex spatiotemporal dependencies. Furthermore, it introduces a dual-layer encoder-decoder residual correction module that effectively compensates for prediction errors, substantially enhancing forecasting accuracy. Experimental results on four public traffic datasets demonstrate that the AST-DGCN model achieves significant performance advantages over baseline methods across three critical evaluation metrics: root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), thereby fully validating its superior predictive capabilities and competitive advantages.
交通预测作为智能交通系统的核心技术,在动态路网优化和城市出行规划中起着关键作用。然而,交通网络复杂的时空特征给精确捕捉其动态模式带来了重大挑战。现有方法主要依赖预定义的静态邻接矩阵,并对空间和时间特征进行单独处理,未能充分探索它们之间的内在耦合关系。为了解决这些局限性,我们提出了一种用于交通预测的自适应时空动态图卷积网络(AST-DGCN)。在编码器-解码器架构下,该模型利用节点嵌入技术提取高维特征,通过自注意力机制生成随时间演变的自适应图。同时,该模型将动态图与门控循环单元协同集成,以实现对复杂时空依赖性的联合建模。此外,它引入了一个双层编码器-解码器残差校正模块,有效补偿预测误差,大幅提高预测精度。在四个公共交通数据集上的实验结果表明,AST-DGCN模型在均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)这三个关键评估指标上比基线方法具有显著的性能优势,从而充分验证了其卓越的预测能力和竞争优势。