Suppr超能文献

一种使用带有注意力机制的涅斯捷罗夫加速亚当优化器进行乳腺癌检测的新方法。

A novel approach for breast cancer detection using a Nesterov accelerated adam optimizer with an attention mechanism.

作者信息

Saber Abeer, Emara Tamer, Elbedwehy Samar, Hassan Esraa

机构信息

Information Technology Department, Faculty of Computers and Artificial Intelligence, Damietta University, Damietta, 34517, Egypt.

Department of Data Science, Faculty of Artifcial Intelligence, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt.

出版信息

Sci Rep. 2025 Jul 25;15(1):27065. doi: 10.1038/s41598-025-12070-y.

Abstract

Image-based automatic breast tumor detection has become a significant research focus, driven by recent advancements in machine learning (ML) algorithms. Traditional disease detection methods often involve manual feature extraction from images, a process requiring extensive expertise from specialists and pathologists. This labor-intensive approach is not only time-consuming but also impractical for widespread application. However, advancements in digital technologies and computer vision have enabled convolutional neural networks (CNNs) to learn features automatically, thereby overcoming these challenges. This paper presents a deep neural network model based on the MobileNet-V2 architecture, enhanced with a convolutional block attention mechanism for identifying tumor types in ultrasound images. The attention module improves the MobileNet-V2 model's performance by highlighting disease-affected areas within the images. The proposed model refines features extracted by MobileNet-V2 using the Nesterov-accelerated Adaptive Moment Estimation (Nadam) optimizer. This integration enhances convergence and stability, leading to improved classification accuracy. The proposed approach was evaluated on the BUSI ultrasound image dataset. Experimental results demonstrated strong performance, achieving an accuracy of 99.1%, sensitivity of 99.7%, specificity of 99.5%, precision of 97.7%, and an area under the curve (AUC) of 1.0 using an 80-20 data split. Additionally, under 10-fold cross-validation, the model achieved an accuracy of 98.7%, sensitivity of 99.1%, specificity of 98.3%, precision of 98.4%, F1-score of 98.04%, and an AUC of 0.99.

摘要

在机器学习(ML)算法的最新进展推动下,基于图像的自动乳腺肿瘤检测已成为一个重要的研究焦点。传统的疾病检测方法通常涉及从图像中手动提取特征,这一过程需要专家和病理学家具备广泛的专业知识。这种劳动密集型方法不仅耗时,而且对于广泛应用来说也不切实际。然而,数字技术和计算机视觉的进步使卷积神经网络(CNN)能够自动学习特征,从而克服了这些挑战。本文提出了一种基于MobileNet-V2架构的深度神经网络模型,并通过卷积块注意力机制进行增强,用于识别超声图像中的肿瘤类型。注意力模块通过突出图像中受疾病影响的区域来提高MobileNet-V2模型的性能。所提出的模型使用Nesterov加速自适应矩估计(Nadam)优化器对MobileNet-V2提取的特征进行细化。这种整合增强了收敛性和稳定性,从而提高了分类准确率。所提出的方法在BUSI超声图像数据集上进行了评估。实验结果显示出强大的性能,在80-20数据分割的情况下,准确率达到99.1%,灵敏度为99.7%,特异性为99.5%,精确率为97.7%,曲线下面积(AUC)为1.0。此外,在10折交叉验证下,该模型的准确率为98.7%,灵敏度为99.1%,特异性为98.3%,精确率为98.4%,F1分数为98.04%,AUC为0.99。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e98c/12297501/f105e280c2c9/41598_2025_12070_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验