Suppr超能文献

基于白光和窄带成像内镜的鼻咽癌识别的深度学习。

Deep Learning for nasopharyngeal Carcinoma Identification Using Both White Light and Narrow-Band Imaging Endoscopy.

机构信息

Deepwise Joint Lab, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Department of Endoscopy, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Laryngoscope. 2022 May;132(5):999-1007. doi: 10.1002/lary.29894. Epub 2021 Oct 8.

Abstract

OBJECTIVES/HYPOTHESIS: To develop a deep-learning-based automatic diagnosis system for identifying nasopharyngeal carcinoma (NPC) from noncancer (inflammation and hyperplasia), using both white light imaging (WLI) and narrow-band imaging (NBI) nasopharyngoscopy images.

STUDY DESIGN

Retrospective study.

METHODS

A total of 4,783 nasopharyngoscopy images (2,898 WLI and 1,885 NBI) of 671 patients were collected and a novel deep convolutional neural network (DCNN) framework was developed named Siamese deep convolutional neural network (S-DCNN), which can simultaneously utilize WLI and NBI images to improve the classification performance. To verify the effectiveness of combining the above-mentioned two modal images for prediction, we compared the proposed S-DCNN with two baseline models, namely DCNN-1 (only considering WLI images) and DCNN-2 (only considering NBI images).

RESULTS

In the threefold cross-validation, an overall accuracy and area under the curve of the three DCNNs achieved 94.9% (95% confidence interval [CI] 93.3%-96.5%) and 0.986 (95% CI 0.982-0.992), 87.0% (95% CI 84.2%-89.7%) and 0.930 (95% CI 0.906-0.961), and 92.8% (95% CI 90.4%-95.3%) and 0.971 (95% CI 0.953-0.992), respectively. The accuracy of S-DCNN is significantly improved compared with DCNN-1 (P-value <.001) and DCNN-2 (P-value = .008).

CONCLUSION

Using the deep-learning technology to automatically diagnose NPC under nasopharyngoscopy can provide valuable reference for NPC screening. Superior performance can be obtained by simultaneously utilizing the multimodal features of NBI image and WLI image of the same patient.

LEVEL OF EVIDENCE

3 Laryngoscope, 132:999-1007, 2022.

摘要

目的/假设:开发一种基于深度学习的自动诊断系统,用于从非癌症(炎症和增生)中识别鼻咽癌(NPC),同时使用白光成像(WLI)和窄带成像(NBI)鼻咽喉镜图像。

研究设计

回顾性研究。

方法

共收集了 671 名患者的 4783 张鼻咽喉镜图像(2898 张 WLI 和 1885 张 NBI),并开发了一种新的深度卷积神经网络(DCNN)框架,称为暹罗深度卷积神经网络(S-DCNN),该框架可以同时利用 WLI 和 NBI 图像来提高分类性能。为了验证同时使用上述两种模态图像进行预测的有效性,我们将提出的 S-DCNN 与两个基线模型进行了比较,即 DCNN-1(仅考虑 WLI 图像)和 DCNN-2(仅考虑 NBI 图像)。

结果

在三折交叉验证中,三个 DCNN 的总体准确率和曲线下面积达到 94.9%(95%置信区间[CI]93.3%-96.5%)和 0.986(95%CI 0.982-0.992)、87.0%(95%CI 84.2%-89.7%)和 0.930(95%CI 0.906-0.961)、92.8%(95%CI 90.4%-95.3%)和 0.971(95%CI 0.953-0.992)。S-DCNN 的准确率明显优于 DCNN-1(P 值<.001)和 DCNN-2(P 值=.008)。

结论

使用深度学习技术自动诊断鼻咽喉镜下的 NPC 可为 NPC 筛查提供有价值的参考。通过同时利用同一患者的 NBI 图像和 WLI 图像的多模态特征,可以获得更好的性能。

证据水平

3 级喉镜,132:999-1007,2022 年。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验