Suppr超能文献

-活性氧、激素信号传导和防御基因网络的介导协同调控驱动玉米对玉米小斑病的抗性

-Mediated Synergistic Regulation of ROS, Hormonal Signaling, and Defense Gene Networks Drives Maize Immunity to Southern Corn Leaf Blight.

作者信息

Su Bo, Yang Xiaolan, Zhang Rui, Dong Shijie, Liu Ying, Jiang Hubiao, Wu Guichun, Ding Ting

机构信息

School of Plant Protection, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.

School of Biological and Food Engineering, Su Zhou University, Suzhou 234000, China.

出版信息

Curr Issues Mol Biol. 2025 Jul 21;47(7):573. doi: 10.3390/cimb47070573.

Abstract

The rapid evolution of pathogens and the limited genetic diversity of hosts are two major factors contributing to the plant pathogenic phenomenon known as the loss of disease resistance in maize ( L.). It has emerged as a significant biological stressor threatening the global food supplies and security. Based on previous cross-species homologous gene screening assays conducted in the laboratory, this study identified the maize disease-resistance candidate gene to investigate the maize immune regulation mechanism against . Subcellular localization assays confirmed that the ZmNLR-7 protein is localized in the plasma membrane and nucleus, and phylogenetic analysis revealed that it contains a conserved NB-ARC domain. Analysis of tissue expression patterns revealed that was expressed in all maize tissues, with the highest expression level (5.11 times) exhibited in the leaves, and that its transcription level peaked at 11.92 times 48 h post infection. Upon inoculating the EMS mutants with , the disease index was increased to 33.89 and 43.33, respectively, and the lesion expansion rate was higher than that in the wild type, indicating enhanced susceptibility to southern corn leaf blight. Physiological index measurements revealed a disturbance of ROS metabolism in EMS mutants, with SOD activity decreased by approximately 30% and 55%, and POD activity decreased by 18% and 22%. Moreover, HO content decreased, while lipid peroxide MDA accumulation increased. Transcriptomic analysis revealed a significant inhibition of the expression of the key genes and in the SA/ET signaling pathway and a decrease in the expression of disease-related genes and . This study established a new paradigm for the study of NLR protein-mediated plant immune mechanisms and provided target genes for molecular breeding of disease resistance in maize. Overall, these findings provide the first evidence that confers resistance to southern corn leaf blight in maize by synergistically regulating ROS homeostasis, SA/ET signal transduction, and downstream defense gene expression networks.

摘要

病原体的快速进化和宿主有限的遗传多样性是导致玉米(L.)抗病性丧失这一植物致病现象的两个主要因素。它已成为威胁全球粮食供应和安全的重要生物胁迫因素。基于此前在实验室进行的跨物种同源基因筛选试验,本研究鉴定出玉米抗病候选基因,以探究玉米针对[病原体名称未给出]的免疫调控机制。亚细胞定位试验证实ZmNLR - 7蛋白定位于质膜和细胞核,系统发育分析表明它含有保守的NB - ARC结构域。组织表达模式分析显示[基因名称未给出]在玉米所有组织中均有表达,在叶片中表达水平最高(为5.11倍),且其转录水平在[病原体名称未给出]感染后48小时达到峰值,为11.92倍。用[病原体名称未给出]接种[基因名称未给出]的EMS突变体后,病情指数分别增至33.89和43.33,病斑扩展速率高于野生型,表明对玉米小斑病的易感性增强。生理指标测量显示[基因名称未给出]的EMS突变体中ROS代谢受到干扰,超氧化物歧化酶(SOD)活性分别降低约30%和55%,过氧化物酶(POD)活性降低18%和22%。此外,过氧化氢(HO)含量降低,而过氧化脂质丙二醛(MDA)积累增加。转录组分析显示,水杨酸(SA)/乙烯(ET)信号通路中的关键基因[基因名称未给出]和[基因名称未给出]的表达受到显著抑制,与疾病相关的基因[基因名称未给出]和[基因名称未给出]的表达也有所下降。本研究为NLR蛋白介导的植物免疫机制研究建立了新范式,并为玉米抗病分子育种提供了靶标基因。总体而言,这些发现首次证明[基因名称未给出]通过协同调节ROS稳态、SA/ET信号转导及下游防御基因表达网络赋予玉米对玉米小斑病的抗性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd0a/12293289/42b51ce31064/cimb-47-00573-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验