文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过知识蒸馏将具有成本效益、具备自主性的人工智能应用于多语言医学摘要,实现其普及化。

Democratizing cost-effective, agentic artificial intelligence to multilingual medical summarization through knowledge distillation.

作者信息

Lee Chanseo, Kumar Sonu, Vogt Kimon A, Munshi Muhammad, Tallapudi Panindhra, Vogt Antonia, Awad Hamzeh, Khan Wasim

机构信息

Sporo Health, Boston, MA, USA.

Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA.

出版信息

Sci Rep. 2025 Jul 29;15(1):27619. doi: 10.1038/s41598-025-10451-x.


DOI:10.1038/s41598-025-10451-x
PMID:40730812
Abstract

The increasing demand for multilingual capabilities in healthcare technology highlights the critical need for AI solutions capable of handling underrepresented languages, such as Arabic, in clinical documentation. Arabic's unique linguistic complexities-morphological richness, syntactic variations, and diglossia-present significant challenges for foundational large language models (LLMs), especially in domain-specific tasks like medical summarization. This study introduces AraSum, a domain-specific AI agent built using a novel knowledge distillation framework that transforms large multilingual LLMs into lightweight, task-optimized small language models (SLMs). Leveraging a synthetic dataset of Arabic medical dialogues, AraSum demonstrates superior performance over JAIS-30B, a foundational Arabic LLM, across key evaluation metrics, including BLEU and ROUGE scores. AraSum also outperforms JAIS in Arabic-speaking evaluator assessments of accuracy, comprehensiveness, and clinical utility while maintaining comparable linguistic performance as measured by a modified PDQI-9 inventory. Beyond accuracy, AraSum achieves these results with significantly lower computational and environmental costs, demonstrating the feasibility of deploying resource-efficient AI models in low-resource settings for domain-specific tasks. This work underscores the potential of SLM-based agentic architectures for advancing multilingual healthcare, encouraging sustainable artificial intelligence, and fostering equity in access to care.

摘要

医疗技术对多语言能力的需求日益增加,凸显了对能够处理临床文档中使用较少语言(如阿拉伯语)的人工智能解决方案的迫切需求。阿拉伯语独特的语言复杂性——形态丰富、句法多样和双语现象——给基础大语言模型(LLM)带来了重大挑战,尤其是在医学摘要等特定领域任务中。本研究介绍了AraSum,这是一个使用新颖的知识蒸馏框架构建的特定领域人工智能代理,该框架将大型多语言LLM转换为轻量级、任务优化的小语言模型(SLM)。利用阿拉伯语医学对话的合成数据集,AraSum在包括BLEU和ROUGE分数在内的关键评估指标上,展示了优于基础阿拉伯语LLM JAIS - 30B 的性能。在阿拉伯语评估者对准确性、全面性和临床实用性的评估中,AraSum也优于JAIS,同时在通过修改后的PDQI - 9量表测量的语言性能方面保持可比。除了准确性,AraSum以显著更低的计算和环境成本实现了这些结果,证明了在低资源环境中为特定领域任务部署资源高效的人工智能模型的可行性。这项工作强调了基于SLM的代理架构在推进多语言医疗保健、鼓励可持续人工智能以及促进医疗服务获取公平性方面的潜力。

相似文献

[1]
Democratizing cost-effective, agentic artificial intelligence to multilingual medical summarization through knowledge distillation.

Sci Rep. 2025-7-29

[2]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[3]
Exploring the potential of lightweight large language models for AI-based mental health counselling task: a novel comparative study.

Sci Rep. 2025-7-2

[4]
Application of unified health large language model evaluation framework to In-Basket message replies: bridging qualitative and quantitative assessments.

J Am Med Inform Assoc. 2025-4-1

[5]
Menstrual Health Education Using a Specialized Large Language Model in India: Development and Evaluation Study of MenstLLaMA.

J Med Internet Res. 2025-7-16

[6]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[7]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[8]
Artificial intelligence-simplified information to advance reproductive genetic literacy and health equity.

Hum Reprod. 2025-7-22

[9]
Using a Multilingual AI Care Agent to Reduce Disparities in Colorectal Cancer Screening for Higher Fecal Immunochemical Test Adoption Among Spanish-Speaking Patients: Retrospective Analysis.

J Med Internet Res. 2025-6-25

[10]
Development and Validation of a Large Language Model-Powered Chatbot for Neurosurgery: Mixed Methods Study on Enhancing Perioperative Patient Education.

J Med Internet Res. 2025-7-15

本文引用的文献

[1]
Tibyan corpus: balanced and comprehensive error coverage corpus using ChatGPT for Arabic grammatical error correction.

PeerJ Comput Sci. 2025-3-31

[2]
Implementing large language models in healthcare while balancing control, collaboration, costs and security.

NPJ Digit Med. 2025-3-6

[3]
Prospects for AI clinical summarization to reduce the burden of patient chart review.

Front Digit Health. 2024-11-7

[4]
Economics and Equity of Large Language Models: Health Care Perspective.

J Med Internet Res. 2024-11-14

[5]
The carbon emissions of writing and illustrating are lower for AI than for humans.

Sci Rep. 2024-2-14

[6]
Federated machine learning in healthcare: A systematic review on clinical applications and technical architecture.

Cell Rep Med. 2024-2-20

[7]
Quality and safety issue: language barriers in healthcare, a qualitative study of non-Arab healthcare practitioners caring for Arabic patients in the UAE.

BMJ Open. 2023-12-22

[8]
A Qualitative Investigation of Factors Affecting Saudi Patients' Communication Experience with Non-Saudi Physicians in Saudi Arabia.

Healthcare (Basel). 2022-12-30

[9]
On evaluation metrics for medical applications of artificial intelligence.

Sci Rep. 2022-4-8

[10]
The future of digital health with federated learning.

NPJ Digit Med. 2020-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索