Lewinska Gabriela, Sanetra Jerzy, Marszalek Konstanty W, Quandt Alexander, Sahraoui Bouchta
Institute of Electronics, AGH University of Krakow, 30 Mickiewicza Ave, 30-059 Krakow, Poland.
Advanced Diagnostic Equipment sp. zoo, Włodzimierza Tetmajera 79, 31-352 Krakow, Poland.
Materials (Basel). 2025 Jul 15;18(14):3319. doi: 10.3390/ma18143319.
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, and Y5: 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2',3':4',5'] thieno[2',3':4,5]pyrrolo[3,2-g] thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro1H-indene-2,1-diylidene))dimalononitrile) and Y6 non-fullerene acceptors: (2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13- dihydro-[1,2,5]thiadiazolo[3,4- e] thieno [2,″3″:4',5']thieno [2',3':4,5]), non-fullerene acceptors, were analyzed using spectroscopic ellipsometry and third-harmonic generation techniques across a temperature range of 30 °C to 120 °C. The absorption spectra of the ternary layers remained largely stable with temperature, but ellipsometry revealed temperature-dependent changes in layer thickness (a few percent increase during heating) and variations in refractive index and extinction coefficients, suggesting modest structural alterations. Analysis using a gradient model indicated that film composition varies with thickness. Third-harmonic generation measurements showed a decrease in χ after annealing, with the most significant change observed in the PTB7th:Y5:PCBM layer.
本研究调查了温度对用于太阳能电池应用的三元有机薄膜的线性和非线性光学性质的影响。使用椭圆偏振光谱法和三次谐波产生技术,在30℃至120℃的温度范围内对三种三元有机薄膜(聚({4,8-双[(2-乙基己基)氧基]苯并[1,2-b:4,5-b']二噻吩-2,6-二基}{3-氟-2-[(2-乙基己基)羰基]噻吩并[3,4-b]噻吩二基})和(聚([2,6'-4,8-二(5-乙基己基噻吩基)苯并[1,2-b;3,3-b]二噻吩]{3-氟-2[(2-乙基己基)羰基]噻吩并[3,4-b]噻吩二基}),标记为PTB7和PTB7th-给体,PCBM,苯基-C61-丁酸甲酯受体,以及Y5:2,2'-((2Z,2'Z)-((12,13-双(2-乙基己基)-3,9-二十一烷基-12,13-二氢[1,2,5]噻二唑并[3,4-e]噻吩并[2',3':4',5']噻吩并[2',3':4,5]吡咯并[3,2-g]噻吩并[2',3':4,5]噻吩并[3,2-b]吲哚-2,10-二基)双(亚甲基))双(3-氧代-2,3-二氢-1H-茚-2,1-二亚基))二丙二腈)和Y6非富勒烯受体:(2,2'-((2Z,2'Z)-((12,13-双(2-乙基己基)-3,9-二十一烷基-12,13-二氢-[1,2,5]噻二唑并[3,4- e]噻吩并[2,″3″:4',5']噻吩并[2',3':4,5]),非富勒烯受体进行了分析。三元层的吸收光谱随温度基本保持稳定,但椭圆偏振光谱法显示层厚度随温度变化(加热过程中增加百分之几)以及折射率和消光系数的变化,表明结构有适度改变。使用梯度模型分析表明薄膜组成随厚度变化。三次谐波产生测量显示退火后χ降低,在PTB7th:Y5:PCBM层中观察到最显著的变化。