Suppr超能文献

基于有机忆阻器的具有生物拟态突触可塑性的柔性神经网络,用于复杂组合优化。

Organic Memristor-Based Flexible Neural Networks with Bio-Realistic Synaptic Plasticity for Complex Combinatorial Optimization.

机构信息

School of Electronics Engineering, and School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea.

Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Jul;10(19):e2300659. doi: 10.1002/advs.202300659. Epub 2023 May 15.

Abstract

Hardware neural networks with mechanical flexibility are promising next-generation computing systems for smart wearable electronics. Several studies have been conducted on flexible neural networks for practical applications; however, developing systems with complete synaptic plasticity for combinatorial optimization remains challenging. In this study, the metal-ion injection density is explored as a diffusive parameter of the conductive filament in organic memristors. Additionally, a flexible artificial synapse with bio-realistic synaptic plasticity is developed using organic memristors that have systematically engineered metal-ion injections, for the first time. In the proposed artificial synapse, short-term plasticity (STP), long-term plasticity, and homeostatic plasticity are independently achieved and are analogous to their biological counterparts. The time windows of the STP and homeostatic plasticity are controlled by the ion-injection density and electric-signal conditions, respectively. Moreover, stable capabilities for complex combinatorial optimization in the developed synapse arrays are demonstrated under spike-dependent operations. This effective concept for realizing flexible neuromorphic systems for complex combinatorial optimization is an essential building block for achieving a new paradigm of wearable smart electronics associated with artificial intelligent systems.

摘要

具有机械柔韧性的硬件神经网络是下一代智能可穿戴电子产品有前途的计算系统。已经有几项关于用于实际应用的柔性神经网络的研究;然而,开发具有完整的组合优化突触可塑性的系统仍然具有挑战性。在这项研究中,金属离子注入密度被探索为有机忆阻器中导电丝的扩散参数。此外,首次使用系统地进行金属离子注入的有机忆阻器开发了具有生物现实突触可塑性的柔性人工突触。在所提出的人工突触中,短期可塑性(STP)、长期可塑性和动态平衡可塑性独立实现,类似于它们的生物学对应物。STP 和动态平衡可塑性的时间窗口分别由离子注入密度和电信号条件控制。此外,在基于尖峰的操作下,证明了所开发的突触阵列在复杂组合优化中的稳定能力。这种用于实现复杂组合优化的柔性神经形态系统的有效概念是实现与人工智能系统相关的新型可穿戴智能电子产品的重要组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a76d/10323658/3665576a7d59/ADVS-10-2300659-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验