文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的基于金属有机框架的微流控芯片的最新进展

Recent Advancements in Metal-Organic Framework-Based Microfluidic Chips for Biomedical Applications.

作者信息

Kidanemariam Alemayehu, Cho Sungbo

机构信息

Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

出版信息

Micromachines (Basel). 2025 Jun 24;16(7):736. doi: 10.3390/mi16070736.


DOI:10.3390/mi16070736
PMID:40731645
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12298669/
Abstract

The integration of metal-organic frameworks (MOFs) with microfluidic technologies has opened new frontiers in biomedical diagnostics and therapeutics. Microfluidic chips offer precise fluid control, low reagent use, and high-throughput capabilities features further enhanced by MOFs' ample surface area, adjustable porosity, and catalytic activity. Together, they form powerful lab-on-a-chip platforms for sensitive biosensing, drug delivery, tissue engineering, and microbial detection. This review highlights recent advances in MOF-based microfluidic systems, focusing on material innovations, fabrication methods, and diagnostic applications. Particular emphasis is placed on MOF nanozymes, which enhance biochemical reactions for multiplexed testing and rapid pathogen identification. Challenges such as stability, biocompatibility, and manufacturing scalability are addressed, along with emerging trends like responsive MOFs, AI-assisted design, and clinical translation strategies. By bridging MOF chemistry and microfluidic engineering, these systems hold great promise for next-generation biomedical technologies.

摘要

金属有机框架(MOF)与微流控技术的结合为生物医学诊断和治疗开辟了新的前沿领域。微流控芯片提供精确的流体控制、低试剂用量和高通量能力,而MOF的大表面积、可调节孔隙率和催化活性进一步增强了这些特性。它们共同构成了强大的芯片实验室平台,用于灵敏的生物传感、药物递送、组织工程和微生物检测。本综述重点介绍了基于MOF的微流控系统的最新进展,重点关注材料创新、制造方法和诊断应用。特别强调了MOF纳米酶,它可增强生化反应以进行多重检测和快速病原体鉴定。文中还讨论了稳定性、生物相容性和制造可扩展性等挑战,以及响应性MOF、人工智能辅助设计和临床转化策略等新兴趋势。通过将MOF化学与微流控工程相结合,这些系统在下一代生物医学技术方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/8df9c70825eb/micromachines-16-00736-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/52b45458cdf5/micromachines-16-00736-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/54911ecd09b0/micromachines-16-00736-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/ef05ee6d09b8/micromachines-16-00736-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/ecb2474a1ece/micromachines-16-00736-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/4f1039f40e05/micromachines-16-00736-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/1a8dccea9265/micromachines-16-00736-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/ebc4afdc9028/micromachines-16-00736-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/652456063cd0/micromachines-16-00736-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/d103f387652b/micromachines-16-00736-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/92782281a7f2/micromachines-16-00736-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/8df9c70825eb/micromachines-16-00736-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/52b45458cdf5/micromachines-16-00736-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/54911ecd09b0/micromachines-16-00736-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/ef05ee6d09b8/micromachines-16-00736-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/ecb2474a1ece/micromachines-16-00736-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/4f1039f40e05/micromachines-16-00736-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/1a8dccea9265/micromachines-16-00736-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/ebc4afdc9028/micromachines-16-00736-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/652456063cd0/micromachines-16-00736-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/d103f387652b/micromachines-16-00736-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/92782281a7f2/micromachines-16-00736-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a226/12298669/8df9c70825eb/micromachines-16-00736-g011.jpg

相似文献

[1]
Recent Advancements in Metal-Organic Framework-Based Microfluidic Chips for Biomedical Applications.

Micromachines (Basel). 2025-6-24

[2]
Toxicity Challenges and Current Advancement in Metal-Organic Frameworks (MOFs) for Biomedical Applications.

Biol Trace Elem Res. 2025-6-24

[3]
Recent Advances in Metal-Organic Framework-Based Nanozymes for Intelligent Microbial Biosensing: A Comprehensive Review of Biomedical and Environmental Applications.

Biosensors (Basel). 2025-7-7

[4]
The fusion of metal-organic framework (MOF) and covalent organic framework (COF): A synergistic leap toward bridging boundaries in catalytic, sensing, and biomedical frontiers.

Adv Colloid Interface Sci. 2025-7-22

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Innovations in cancer treatment: evaluating drug resistance with lab-on-a-chip technologies.

Int J Pharm. 2025-7-5

[7]
Opportunities in functionalized metal-organic frameworks (MOFs) with open metal sites for optical biosensor application.

Adv Colloid Interface Sci. 2025-7-7

[8]
A biomimetic camouflaged metal organic framework for enhanced siRNA delivery in the tumor environment.

J Mater Chem B. 2024-5-1

[9]
Artificial Intelligence-Assisted Visualized Microspheres for Biochemical Analysis: From Encoding to Decoding.

Acc Chem Res. 2025-8-1

[10]
Biomedical Applications of Functionalized Composites Based on Metal-Organic Frameworks in Bone Diseases.

Pharmaceutics. 2025-6-8

引用本文的文献

[1]
Metal-Organic-Framework-Based Optical Biosensors: Recent Advances in Pathogen Detection and Environmental Monitoring.

Sensors (Basel). 2025-8-15

本文引用的文献

[1]
Live bacteria detection with high specificity by utilizing Eu@MIL-53 (Al) and bacteriophages-based fluorescence biosensor.

Talanta. 2025-10-1

[2]
Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges.

ACS Appl Mater Interfaces. 2025-3-19

[3]
Aptamer-Modified MOFs (Aptamer@MOF) for Efficient Detection of Bacterial Pathogens: A Review.

ACS Appl Mater Interfaces. 2025-2-26

[4]
Biomedical Applications of Metal-Organic Frameworks Revisited.

Ind Eng Chem Res. 2025-1-14

[5]
Integrating Humidity-Resistant and Colorimetric COF-on-MOF Sensors with Artificial Intelligence Assisted Data Analysis for Visualization of Volatile Organic Compounds Sensing.

Adv Sci (Weinh). 2025-3

[6]
Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy.

Mol Pharm. 2025-2-3

[7]
Biomedical Metal-Organic Framework Materials: Perspectives and Challenges.

Adv Funct Mater. 2023-11-21

[8]
Highly efficient electrochemical biosensing platform in breast cancer detection based on MOF-COF@Au core-shell like nanostructure.

Sci Rep. 2024-12-2

[9]
Development of the design and synthesis of metal-organic frameworks (MOFs) - from large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions.

Chem Soc Rev. 2025-1-2

[10]
Biosensors with vancomycin and polymetallic metal-organic frameworks for colorimetric-fluorescent dual-mode detection and sterilization of bacteria.

J Hazard Mater. 2025-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索