Kidanemariam Alemayehu, Cho Sungbo
Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
Micromachines (Basel). 2025 Jun 24;16(7):736. doi: 10.3390/mi16070736.
The integration of metal-organic frameworks (MOFs) with microfluidic technologies has opened new frontiers in biomedical diagnostics and therapeutics. Microfluidic chips offer precise fluid control, low reagent use, and high-throughput capabilities features further enhanced by MOFs' ample surface area, adjustable porosity, and catalytic activity. Together, they form powerful lab-on-a-chip platforms for sensitive biosensing, drug delivery, tissue engineering, and microbial detection. This review highlights recent advances in MOF-based microfluidic systems, focusing on material innovations, fabrication methods, and diagnostic applications. Particular emphasis is placed on MOF nanozymes, which enhance biochemical reactions for multiplexed testing and rapid pathogen identification. Challenges such as stability, biocompatibility, and manufacturing scalability are addressed, along with emerging trends like responsive MOFs, AI-assisted design, and clinical translation strategies. By bridging MOF chemistry and microfluidic engineering, these systems hold great promise for next-generation biomedical technologies.
金属有机框架(MOF)与微流控技术的结合为生物医学诊断和治疗开辟了新的前沿领域。微流控芯片提供精确的流体控制、低试剂用量和高通量能力,而MOF的大表面积、可调节孔隙率和催化活性进一步增强了这些特性。它们共同构成了强大的芯片实验室平台,用于灵敏的生物传感、药物递送、组织工程和微生物检测。本综述重点介绍了基于MOF的微流控系统的最新进展,重点关注材料创新、制造方法和诊断应用。特别强调了MOF纳米酶,它可增强生化反应以进行多重检测和快速病原体鉴定。文中还讨论了稳定性、生物相容性和制造可扩展性等挑战,以及响应性MOF、人工智能辅助设计和临床转化策略等新兴趋势。通过将MOF化学与微流控工程相结合,这些系统在下一代生物医学技术方面具有巨大潜力。
Micromachines (Basel). 2025-6-24
Biol Trace Elem Res. 2025-6-24
Arch Ital Urol Androl. 2025-6-30
Adv Colloid Interface Sci. 2025-7-7
ACS Appl Mater Interfaces. 2025-3-19
ACS Appl Mater Interfaces. 2025-2-26
Ind Eng Chem Res. 2025-1-14
Adv Funct Mater. 2023-11-21