Suppr超能文献

高级成像集成:多模态拉曼光片显微镜结合零样本学习进行去噪和超分辨率处理。

Advanced Imaging Integration: Multi-Modal Raman Light Sheet Microscopy Combined with Zero-Shot Learning for Denoising and Super-Resolution.

机构信息

CeMOS Research and Transfer Center, University of Applied Science, 68163 Mannheim, Germany.

Universitätsklinikum Mannheim, Universität Heidelberg, 68167 Mannheim, Germany.

出版信息

Sensors (Basel). 2024 Nov 3;24(21):7083. doi: 10.3390/s24217083.

Abstract

This study presents an advanced integration of Multi-modal Raman Light Sheet Microscopy with zero-shot learning-based computational methods to significantly enhance the resolution and analysis of complex three-dimensional biological structures, such as 3D cell cultures and spheroids. The Multi-modal Raman Light Sheet Microscopy system incorporates Rayleigh scattering, Raman scattering, and fluorescence detection, enabling comprehensive, marker-free imaging of cellular architecture. These diverse modalities offer detailed spatial and molecular insights into cellular organization and interactions, critical for applications in biomedical research, drug discovery, and histological studies. To improve image quality without altering or introducing new biological information, we apply Zero-Shot Deconvolution Networks (ZS-DeconvNet), a deep-learning-based method that enhances resolution in an unsupervised manner. ZS-DeconvNet significantly refines image clarity and sharpness across multiple microscopy modalities without requiring large, labeled datasets, or introducing artifacts. By combining the strengths of multi-modal light sheet microscopy and ZS-DeconvNet, we achieve improved visualization of subcellular structures, offering clearer and more detailed representations of existing data. This approach holds significant potential for advancing high-resolution imaging in biomedical research and other related fields.

摘要

本研究提出了一种多模态拉曼光片显微镜与基于零样本学习的计算方法的先进集成,以显著提高复杂三维生物结构(如 3D 细胞培养物和球体)的分辨率和分析能力。多模态拉曼光片显微镜系统结合了瑞利散射、拉曼散射和荧光检测,实现了对细胞结构的全面、无标记成像。这些不同的模式提供了对细胞组织和相互作用的详细空间和分子见解,这对于生物医学研究、药物发现和组织学研究等应用至关重要。为了在不改变或引入新的生物信息的情况下提高图像质量,我们应用了基于零样本去卷积网络(ZS-DeconvNet)的方法,这是一种基于深度学习的方法,可以在无监督的情况下提高分辨率。ZS-DeconvNet 无需大量标记数据集或引入伪影,即可显著提高多显微镜模式的图像清晰度和锐度。通过结合多模态光片显微镜和 ZS-DeconvNet 的优势,我们实现了对亚细胞结构的改进可视化,提供了更清晰、更详细的现有数据表示。这种方法在生物医学研究和其他相关领域的高分辨率成像方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed73/11548172/4c37b6e8ae52/sensors-24-07083-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验