Suppr超能文献

评估常见临床混杂因素对基于深度学习的脓毒症风险评估性能的影响。

Evaluating the impact of common clinical confounders on performance of deep-learning-based sepsis risk assessment.

作者信息

Chaganti Shikha, Singh Vivek, Gent Alasdair Edward, Kamaleswaran Rishikesan, Kamen Ali

机构信息

Siemens Healthineers, Princeton, NJ, United States.

School of Medicine, Duke University, Durham, NC, United States.

出版信息

Front Artif Intell. 2025 Jul 15;8:1452471. doi: 10.3389/frai.2025.1452471. eCollection 2025.

Abstract

INTRODUCTION

Early identification of sepsis in the emergency department using machine learning remains a challenging problem, primarily due to the lack of a gold standard for sepsis diagnosis, the heterogeneity in clinical presentations, and the impact of confounding conditions.

METHODS

In this work, we present a deep-learning-based predictive model designed to enable early detection of patients at risk of developing sepsis, using data from the first 24 h of admission. The model is based on routine blood test results commonly performed on patients, including CBC (Complete Blood Count), CMP (Comprehensive Metabolic Panel), lipid panels, vital signs, age, and sex. To address the challenge of label uncertainty as a part of the training process, we explore two different definitions, namely, Sepsis-3 and Adult Sepsis Event. We analyze the advantages and limitations of each in the context of patient clinical parameters and comorbidities. We specifically examine how the quality of the ground truth label influences the performance of the deep learning system and evaluate the effect of a consensus-based approach that incorporates both definitions. We also evaluated the model's performance across sub-cohorts, including patients with confounding comorbidities (such as chronic kidney, liver disease, and coagulation disorders) and those with infections confirmed by billing codes.

RESULTS

Our results show that the consensus-based model identifies at-risk patients in the first 24 h with 83.7% sensitivity, 80% specificity, 36% PPV, 97% NPV, and an AUC of 0.9. Our cohort-wise analysis revealed a high PPV (77%) in infection-confirmed subgroups and a drop in specificity across cohorts with confounding comorbidities (47-70%).

DISCUSSION

This work highlights the limitations of retrospective sepsis definitions and underscores the need for tailored approaches in automated sepsis detection, particularly when dealing with patients with confounding comorbidities.

摘要

引言

利用机器学习在急诊科早期识别脓毒症仍然是一个具有挑战性的问题,主要原因是缺乏脓毒症诊断的金标准、临床表现的异质性以及混杂因素的影响。

方法

在这项研究中,我们提出了一种基于深度学习的预测模型,旨在利用入院后最初24小时的数据,早期检测有发生脓毒症风险的患者。该模型基于患者常规进行的血液检测结果,包括全血细胞计数(CBC)、综合代谢指标(CMP)、血脂指标、生命体征、年龄和性别。为了解决作为训练过程一部分的标签不确定性挑战,我们探索了两种不同的定义,即脓毒症-3和成人脓毒症事件。我们在患者临床参数和合并症的背景下分析了每种定义的优缺点。我们特别研究了真实标签的质量如何影响深度学习系统的性能,并评估了结合两种定义的基于共识的方法的效果。我们还评估了该模型在亚组中的性能,包括患有混杂合并症(如慢性肾脏、肝脏疾病和凝血障碍)的患者以及通过计费代码确认感染的患者。

结果

我们的结果表明,基于共识的模型在前24小时内识别出有风险患者的灵敏度为83.7%,特异度为80%,阳性预测值为36%,阴性预测值为97%,曲线下面积为0.9。我们的队列分析显示,在感染确诊亚组中阳性预测值较高(77%),而在患有混杂合并症的队列中特异度有所下降(47%-70%)。

讨论

这项研究突出了回顾性脓毒症定义的局限性,并强调了在自动脓毒症检测中采用定制方法的必要性,特别是在处理患有混杂合并症的患者时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d632/12305701/3ea5757075f9/frai-08-1452471-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验