Suppr超能文献

小型及膝关节大小磁共振成像体模中的T1ρ和T2*测量:体模大小及相对于等中心位置的影响

T1ρ and T2* Measurements in Small and Knee-Sized Magnetic Resonance Imaging Phantoms: Effect of Phantom Size and Position Relative to Isocenter.

作者信息

Ramsdell John C, Beynnon Bruce D, Borah Andrew S, Gardner-Morse Mack G, Zhang Jiming, Krug Mickey I, Tourville Timothy W, Geeslin Matthew, Failla Mathew J, Vacek Pamela M, Fiorentino Niccolo M

机构信息

Department of Electrical and Biomedical Engineering, University of Vermont.

Department of Orthopaedics and Rehabilitation, University of Vermont.

出版信息

Osteoarthr Imaging. 2023 Sep;3(3). doi: 10.1016/j.ostima.2023.100162. Epub 2023 Jul 11.

Abstract

OBJECTIVE

Quantitative magnetic resonance imaging (qMRI) parameters such as T1ρ and T2* characterize changes in cartilage matrix composition prior to cartilage loss. However, T1ρ and T2* measurement reliability in phantoms that mimic knee size and position within the scanner bore (left or right side of isocenter) is unknown. This study aimed to quantify sources of variance, and the systematic differences between left and right positions in T1ρ and T2* in small vials of a commercially available phantom and a knee-sized phantom.

METHODS

Phantoms were imaged 100 mm to the left and right of isocenter on five days using 3D MAPSS (T1ρ) and 3D gradient echo (T2*) sequences at 3T. Variance component analysis estimated the variability attributable to slice, side, vial, and day. Measurement error was quantified with 95% confidence intervals (CI). Paired t-tests evaluated systematic differences between the left and right imaging locations (p<.05).

RESULTS

Averaged across days the left-to-right phantom positions produced differences of 0.1ms (p<.0001) for T1ρ and -0.8ms (p<.0001) for T2* in the knee-sized phantoms, and differences ranged from -1.5±0.3ms (p=0.0004) to -0.4±0.4ms (p=0.045) for T1ρ and -3.3±2.5ms (p<.0001) to 2.3±1.5ms (p<.0001) for T2* in the small vial phantoms. The total variance for T2* was much less for the knee-sized phantom (0.9) than the small-vial pairs with the same concentration (7.0).

CONCLUSIONS

This study revealed a position and phantom size dependence on qMRI parameters not reported previously. Future studies and quality control acquisitions should consider position within the MR scanner and phantom size in their design.

摘要

目的

定量磁共振成像(qMRI)参数,如T1ρ和T2*,可在软骨丢失之前表征软骨基质成分的变化。然而,在模拟膝关节大小及在扫描孔内位置(等中心左侧或右侧)的模型中,T1ρ和T2测量的可靠性尚不清楚。本研究旨在量化方差来源,以及在市售模型的小瓶和膝关节大小模型中,T1ρ和T2在左侧和右侧位置之间的系统差异。

方法

使用3D MAPSS(T1ρ)和3D梯度回波(T2*)序列在3T条件下,于等中心左侧和右侧100 mm处对模型进行为期五天的成像。方差成分分析估计了切片、侧面、小瓶和日期所导致的变异性。测量误差用95%置信区间(CI)进行量化。配对t检验评估左右成像位置之间的系统差异(p<0.05)。

结果

在膝关节大小的模型中,T1ρ的左右模型位置平均每天产生0.1毫秒的差异(p<0.0001),T2为-0.8毫秒(p<0.0001);在小瓶模型中,T1ρ的差异范围为-1.5±0.3毫秒(p=0.0004)至-0.4±0.4毫秒(p=0.045),T2为-3.3±2.5毫秒(p<0.0001)至2.3±1.5毫秒(p<0.0001)。膝关节大小模型的T2*总方差(0.9)远小于相同浓度小瓶模型对的总方差(7.0)。

结论

本研究揭示了qMRI参数对位置和模型大小的依赖性,这是之前未报道过的。未来的研究和质量控制采集在设计中应考虑磁共振扫描仪内的位置和模型大小。

相似文献

3
Magnetization-prepared spoiled gradient-echo snapshot imaging for efficient measurement of R -R in knee cartilage.
Magn Reson Med. 2022 Feb;87(2):733-745. doi: 10.1002/mrm.29024. Epub 2021 Sep 30.
4
5
Simultaneous Bilateral T, T, and T Relaxation Mapping of Hip Joint With 3D-MRI Fingerprinting.
J Magn Reson Imaging. 2025 Jul;62(1):160-173. doi: 10.1002/jmri.29679. Epub 2024 Dec 24.
6
Repeatability of Quantitative Knee Cartilage T, T, and T Mapping With 3D-MRI Fingerprinting.
J Magn Reson Imaging. 2024 Aug;60(2):688-699. doi: 10.1002/jmri.29068. Epub 2023 Oct 26.
7
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.
Alzheimers Dement. 2021 Apr;17(4):716-725. doi: 10.1002/alz.12216. Epub 2021 Jan 21.
8
Simultaneous T, T, and T mapping of the myocardium using cardiac MR fingerprinting with a deep image prior reconstruction.
Magn Reson Med. 2025 Oct;94(4):1500-1513. doi: 10.1002/mrm.30580. Epub 2025 May 23.
9
In silico modeling of a clinical photon-counting CT system: Verification and validation.
Med Phys. 2025 Jun;52(6):3840-3853. doi: 10.1002/mp.17886. Epub 2025 May 13.

本文引用的文献

1
Review of Quantitative Knee Articular Cartilage MR Imaging.
Magn Reson Med Sci. 2022 Mar 1;21(1):29-40. doi: 10.2463/mrms.rev.2021-0052. Epub 2021 Sep 1.
2
Multi-vendor multi-site T and T quantification of knee cartilage.
Osteoarthritis Cartilage. 2020 Dec;28(12):1539-1550. doi: 10.1016/j.joca.2020.07.005. Epub 2020 Jul 30.
4
Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis.
Osteoarthritis Cartilage. 2018 Sep;26(9):1140-1152. doi: 10.1016/j.joca.2017.11.018. Epub 2018 Mar 14.
5
MRI UTE-T2* profile characteristics correlate to walking mechanics and patient reported outcomes 2 years after ACL reconstruction.
Osteoarthritis Cartilage. 2018 Apr;26(4):569-579. doi: 10.1016/j.joca.2018.01.012. Epub 2018 Feb 7.
6
UTE bi-component analysis of T2* relaxation in articular cartilage.
Osteoarthritis Cartilage. 2016 Feb;24(2):364-73. doi: 10.1016/j.joca.2015.08.017. Epub 2015 Sep 14.
7
Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis.
Osteoarthritis Cartilage. 2015 Oct;23(10):1639-53. doi: 10.1016/j.joca.2015.05.026. Epub 2015 Jun 5.
8
Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons.
Stat Methods Med Res. 2015 Feb;24(1):68-106. doi: 10.1177/0962280214537390. Epub 2014 Jun 11.
9
Quantitative mapping of human cartilage at 3.0T: parallel changes in T₂, T₁ρ, and dGEMRIC.
Acad Radiol. 2014 Apr;21(4):463-71. doi: 10.1016/j.acra.2013.12.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验