Suppr超能文献

基于人工神经网络模型对新型冠状病毒2感染风险进行前瞻性评估的可能性——一项横断面研究。

The possibilities of prospective assessment of SARS-CoV-2 infection risk based on an artificial neural network model - a cross-sectional and study.

作者信息

Niedobylski Sylwiusz, Warchoł Konrad, Moqbil Sara, Smoleń Agata, Lewicki Marcin

机构信息

Students Research Group at the Chair and Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Lublin, Poland.

Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Lublin, Poland.

出版信息

Arch Med Sci. 2023 Apr 9;21(3):836-844. doi: 10.5114/aoms/159342. eCollection 2025.

Abstract

INTRODUCTION

The prediction of how an infection of a new pathogen, such as SARS-CoV-2, will evolve using traditional modelling methods may turn out to be unattainable, although it could be achievable using techniques. The purpose of this study was to create an artificial neural network that estimates the risk of SARS-CoV-2 infection in individuals after physical contact with confirmed COVID-19 cases.

MATERIAL AND METHODS

A cross-sectional study was conducted with an original 118-item questionnaire. Information concerning participants' demographics, the circumstances of the contact with an infected person, general medical history, lifestyle, preventive behaviours, and the result of the COVID-19 test after the contact was obtained. The study included 1050 participants. The data were used to train and validate an artificial neural network. The project was funded by the Ministry of Education and Science as part of the "Studenckie Koła Naukowe Tworzą Innowacje" student competition (project no. SKN/SP/496779/2021).

RESULTS

The model in the analysis of total available cases had an area under the receiver operating characteristic curve (AUROC) of 0.87, sensitivity of 87.2%, specificity of 80.6% and prediction accuracy of 84.5%. The model shows a high capacity for generalisation - in the testing data set: AUROC 0.76, sensitivity 86.2%, specificity 68.3%, prediction accuracy 78.7%.

CONCLUSIONS

The developed tool is capable of high quality generalisation of the collected data, which translates into its ability to assess the risk of SARS-CoV-2 infection in a person after contact with a COVID-19 case. It has been deployed as an online calculator available on: https://www.umlub.pl/uczelnia/struktura-organizacyjna/szczegoly,317.html.

摘要

引言

尽管使用新技术预测新病原体(如SARS-CoV-2)感染将如何演变或许可以实现,但事实证明,利用传统建模方法可能无法做到这一点。本研究的目的是创建一个人工神经网络,用于估计个体在与确诊的COVID-19病例进行身体接触后感染SARS-CoV-2的风险。

材料与方法

采用一份包含118个项目的原始问卷进行横断面研究。收集了有关参与者的人口统计学信息、与感染者接触的情况、一般病史、生活方式、预防行为以及接触后COVID-19检测结果的信息。该研究纳入了1050名参与者。这些数据被用于训练和验证一个人工神经网络。该项目由教育和科学部资助,作为“学生科研团队创造创新”学生竞赛的一部分(项目编号:SKN/SP/496779/2021)。

结果

在分析所有可用病例时,该模型的受试者工作特征曲线下面积(AUROC)为0.87,灵敏度为87.2%,特异度为80.6%,预测准确率为84.5%。该模型显示出较高的泛化能力——在测试数据集中:AUROC为0.76,灵敏度为86.2%,特异度为68.3%,预测准确率为78.7%。

结论

所开发的工具能够对收集到的数据进行高质量的泛化,这转化为其评估个体在接触COVID-19病例后感染SARS-CoV-2风险的能力。它已作为在线计算器部署在:https://www.umlub.pl/uczelnia/struktura-organizacyjna/szczegoly,317.html

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88f9/12305538/bc169c915138/AMS-21-3-159342-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验