Mukherjee Himadri, Ghosh Subhankar, Dhar Ankita, Obaidullah Sk Md, Santosh K C, Roy Kaushik
Department of Computer Science, West Bengal State University, West Bengal, India.
CVPR Unit, Indian Statistical Institute, Kolkata, India.
Appl Intell (Dordr). 2021;51(5):2777-2789. doi: 10.1007/s10489-020-01943-6. Epub 2020 Nov 6.
Since December 2019, the novel COVID-19's spread rate is exponential, and AI-driven tools are used to prevent further spreading [1]. They can help predict, screen, and diagnose COVID-19 positive cases. Within this scope, imaging with Computed Tomography (CT) scans and Chest X-rays (CXRs) are widely used in mass triage situations. In the literature, AI-driven tools are limited to one data type either CT scan or CXR to detect COVID-19 positive cases. Integrating multiple data types could possibly provide more information in detecting anomaly patterns due to COVID-19. Therefore, in this paper, we engineered a Convolutional Neural Network (CNN) -tailored Deep Neural Network (DNN) that can collectively train/test both CT scans and CXRs. In our experiments, we achieved an overall accuracy of 96.28% (AUC = 0.9808 and false negative rate = 0.0208). Further, major existing DNNs provided coherent results while integrating CT scans and CXRs to detect COVID-19 positive cases.
自2019年12月以来,新型冠状病毒肺炎(COVID-19)的传播速度呈指数级增长,人工智能驱动的工具被用于防止其进一步传播[1]。这些工具可帮助预测、筛查和诊断COVID-19阳性病例。在此范围内,计算机断层扫描(CT)和胸部X光(CXR)成像在大规模分流情况下被广泛使用。在文献中,人工智能驱动的工具仅限于使用CT扫描或CXR这一种数据类型来检测COVID-19阳性病例。整合多种数据类型可能会在检测COVID-19引起的异常模式时提供更多信息。因此,在本文中,我们设计了一种定制的卷积神经网络(CNN)深度神经网络(DNN),它可以同时对CT扫描和CXR进行训练/测试。在我们的实验中,我们实现了96.28%的总体准确率(AUC = 0.9808,假阴性率 = 0.0208)。此外,在整合CT扫描和CXR以检测COVID-19阳性病例时,现有的主要DNN也提供了一致的结果。