de Vries Ibáñez Miguel M, Cipriano Luis A, Lagostina Valeria, Olivati Andrea, Chiesa Mario, Petrozza Annamaria, Di Liberto Giovanni, Vilé Gianvito
Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy.
Department of Chemistry, University of Torino, Torino, Italy.
Nat Commun. 2025 Jul 31;16(1):7016. doi: 10.1038/s41467-025-61639-8.
Developing robust catalytic methods for constructing C(sp)-C(sp) bonds is critically important for synthesizing a diverse array of drug molecules. However, this type of reaction poses significant challenges from a chemical standpoint due to issues with regioselectivity, functional group tolerance and complex catalyst design. Current metallaphotoredox approaches do not provide a viable solution because they rely on expensive, toxic, and rare iridium-based photocatalysts, severely limiting their widespread application. In this study, we introduce carbon nitride nanosheets as an efficient and sustainable alternative to traditional photocatalysts. When combined with nickel, carbon nitride nanosheets facilitates the cross-coupling of alkyl halides and carboxylic acids. Our results demonstrate a broad substrate scope and highlight the recyclability of the photocatalyst. Density functional theory calculations provide molecular insights into the role of the catalytic system in facilitating photodecarboxylation and subsequent C-C bond formation. This work expands the potential of photoredox chemistry, and offers a novel method for efficient, industrially relevant light-to-chemical conversion processes.
开发用于构建C(sp)-C(sp)键的强大催化方法对于合成各种药物分子至关重要。然而,由于区域选择性、官能团耐受性和复杂的催化剂设计等问题,这类反应从化学角度来看面临重大挑战。目前的金属光氧化还原方法无法提供可行的解决方案,因为它们依赖于昂贵、有毒且稀有的铱基光催化剂,严重限制了它们的广泛应用。在本研究中,我们引入氮化碳纳米片作为传统光催化剂的一种高效且可持续的替代品。当与镍结合时,氮化碳纳米片促进卤代烃和羧酸的交叉偶联。我们的结果证明了广泛的底物范围,并突出了光催化剂的可回收性。密度泛函理论计算提供了关于催化体系在促进光脱羧和随后的C-C键形成中作用的分子见解。这项工作扩展了光氧化还原化学的潜力,并为高效、与工业相关的光到化学转化过程提供了一种新方法。