Suppr超能文献

大语言模型和视觉深度学习模型在预测接受新辅助放化疗的直肠癌新辅助直肠评分中的作用

Impact of large language models and vision deep learning models in predicting neoadjuvant rectal score for rectal cancer treated with neoadjuvant chemoradiation.

作者信息

Kim Hyun Bin, Tan Hong Qi, Nei Wen Long, Tan Ying Cong Ryan Shea, Cai Yiyu, Wang Fuqiang

机构信息

College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore.

Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore.

出版信息

BMC Med Imaging. 2025 Jul 31;25(1):306. doi: 10.1186/s12880-025-01844-5.

Abstract

This study aims to explore Deep Learning methods, namely Large Language Models (LLMs) and Computer Vision models to accurately predict neoadjuvant rectal (NAR) score for locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiation (NACRT). The NAR score is a validated surrogate endpoint for LARC. 160 CT scans of patients were used in this study, along with 4 different types of radiology reports, 2 generated from CT scans and other 2 from MRI scans, both before and after NACRT. For CT scans, two different approaches with convolutional neural network were utilized to tackle the 3D scan entirely or tackle it slice by slice. For radiology reports, an encoder architecture LLM was used. The performance of the approaches was quantified by the Area under the Receiver Operating Characteristic curve (AUC). The two different approaches for CT scans yielded [Formula: see text] and [Formula: see text] while the LLM trained on post NACRT MRI reports showed the most predictive potential at [Formula: see text] and a statistical improvement, p = 0.03, over the baseline clinical approach (from [Formula: see text] to [Formula: see text])). This study showcases the potential of Large Language Models and the inadequacies of CT scans in predicting NAR values. Clinical trial number Not applicable.

摘要

本研究旨在探索深度学习方法,即大语言模型(LLMs)和计算机视觉模型,以准确预测接受新辅助放化疗(NACRT)的局部晚期直肠癌(LARC)的新辅助直肠(NAR)评分。NAR评分是LARC的一个经过验证的替代终点。本研究使用了160例患者的CT扫描图像,以及4种不同类型的放射学报告,其中2种由CT扫描生成,另外2种由MRI扫描生成,均在NACRT治疗前后。对于CT扫描,采用了两种不同的卷积神经网络方法来处理3D扫描图像,一种是整体处理,另一种是逐片处理。对于放射学报告,使用了一种编码器架构的大语言模型。通过受试者工作特征曲线下面积(AUC)对这些方法的性能进行量化。CT扫描的两种不同方法分别得到了[公式:见原文]和[公式:见原文],而在NACRT后MRI报告上训练的大语言模型在[公式:见原文]时显示出最大的预测潜力,并且与基线临床方法相比有统计学上的改善(p = 0.03)(从[公式:见原文]到[公式:见原文])。本研究展示了大语言模型的潜力以及CT扫描在预测NAR值方面的不足。临床试验编号:不适用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验