Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill.
Human Development and Family Studies, Pennsylvania State University.
Multivariate Behav Res. 2022 Jan-Feb;57(1):134-152. doi: 10.1080/00273171.2020.1815513. Epub 2020 Oct 7.
Researchers collecting intensive longitudinal data (ILD) are increasingly looking to model psychological processes, such as emotional dynamics, that organize and adapt across time in complex and meaningful ways. This is also the case for researchers looking to characterize the impact of an intervention on individual behavior. To be useful, statistical models must be capable of characterizing these processes as complex, time-dependent phenomenon, otherwise only a fraction of the system dynamics will be recovered. In this paper we introduce a Square-Root Second-Order Extended Kalman Filtering approach for estimating smoothly time-varying parameters. This approach is capable of handling dynamic factor models where the relations between variables underlying the processes of interest change in a manner that may be difficult to specify in advance. We examine the performance of our approach in a Monte Carlo simulation and show the proposed algorithm accurately recovers the unobserved states in the case of a bivariate dynamic factor model with time-varying dynamics and treatment effects. Furthermore, we illustrate the utility of our approach in characterizing the time-varying effect of a meditation intervention on day-to-day emotional experiences.
研究人员在收集密集纵向数据(ILD)时,越来越多地希望对心理过程进行建模,例如情绪动态,这些过程以复杂而有意义的方式在时间上组织和适应。对于希望描述干预对个体行为影响的研究人员来说也是如此。为了有用,统计模型必须能够将这些过程描述为复杂的、依赖时间的现象,否则系统动态的只有一小部分会被恢复。在本文中,我们介绍了一种平方根二阶扩展卡尔曼滤波方法,用于估计平滑时变参数。这种方法能够处理动态因子模型,其中感兴趣过程的变量之间的关系以一种可能难以事先指定的方式变化。我们在蒙特卡罗模拟中检查了我们方法的性能,并表明在具有时变动态和治疗效果的双变量动态因子模型的情况下,所提出的算法能够准确地恢复未观察到的状态。此外,我们说明了我们的方法在描述冥想干预对日常情绪体验的时变影响方面的实用性。