Suppr超能文献

一种用于估计平滑时变参数的平方根二阶扩展卡尔曼滤波方法。

A Square-Root Second-Order Extended Kalman Filtering Approach for Estimating Smoothly Time-Varying Parameters.

机构信息

Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill.

Human Development and Family Studies, Pennsylvania State University.

出版信息

Multivariate Behav Res. 2022 Jan-Feb;57(1):134-152. doi: 10.1080/00273171.2020.1815513. Epub 2020 Oct 7.

Abstract

Researchers collecting intensive longitudinal data (ILD) are increasingly looking to model psychological processes, such as emotional dynamics, that organize and adapt across time in complex and meaningful ways. This is also the case for researchers looking to characterize the impact of an intervention on individual behavior. To be useful, statistical models must be capable of characterizing these processes as complex, time-dependent phenomenon, otherwise only a fraction of the system dynamics will be recovered. In this paper we introduce a Square-Root Second-Order Extended Kalman Filtering approach for estimating smoothly time-varying parameters. This approach is capable of handling dynamic factor models where the relations between variables underlying the processes of interest change in a manner that may be difficult to specify in advance. We examine the performance of our approach in a Monte Carlo simulation and show the proposed algorithm accurately recovers the unobserved states in the case of a bivariate dynamic factor model with time-varying dynamics and treatment effects. Furthermore, we illustrate the utility of our approach in characterizing the time-varying effect of a meditation intervention on day-to-day emotional experiences.

摘要

研究人员在收集密集纵向数据(ILD)时,越来越多地希望对心理过程进行建模,例如情绪动态,这些过程以复杂而有意义的方式在时间上组织和适应。对于希望描述干预对个体行为影响的研究人员来说也是如此。为了有用,统计模型必须能够将这些过程描述为复杂的、依赖时间的现象,否则系统动态的只有一小部分会被恢复。在本文中,我们介绍了一种平方根二阶扩展卡尔曼滤波方法,用于估计平滑时变参数。这种方法能够处理动态因子模型,其中感兴趣过程的变量之间的关系以一种可能难以事先指定的方式变化。我们在蒙特卡罗模拟中检查了我们方法的性能,并表明在具有时变动态和治疗效果的双变量动态因子模型的情况下,所提出的算法能够准确地恢复未观察到的状态。此外,我们说明了我们的方法在描述冥想干预对日常情绪体验的时变影响方面的实用性。

相似文献

4
Estimation of dynamic neural activity using a Kalman filter approach based on physiological models.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2914-7. doi: 10.1109/IEMBS.2010.5626281.
7
Modeling of nonlinear biological phenomena modeled by S-systems.由S-系统建模的非线性生物现象建模。
Math Biosci. 2014 Mar;249:75-91. doi: 10.1016/j.mbs.2014.01.011. Epub 2014 Feb 11.
10
Estimation of neuronal responses from fMRI data.从功能磁共振成像数据估计神经元反应。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8122-5. doi: 10.1109/IEMBS.2011.6092003.

本文引用的文献

1
A Tutorial on Estimating Time-Varying Vector Autoregressive Models.关于估计时变向量自回归模型的教程。
Multivariate Behav Res. 2021 Jan-Feb;56(1):120-149. doi: 10.1080/00273171.2020.1743630. Epub 2020 Apr 23.
4
Equivalent Dynamic Models.等效动力学模型。
Multivariate Behav Res. 2017 Mar-Apr;52(2):242-258. doi: 10.1080/00273171.2016.1277681. Epub 2017 Feb 16.
5
The Recoverability of P-technique Factor Analysis.P 技术因子分析的可恢复性。
Multivariate Behav Res. 2009 Jan-Feb;44(1):130-41. doi: 10.1080/00273170802620204.
7
Dynamic Factor Analysis Models With Time-Varying Parameters.具有时变参数的动态因子分析模型。
Multivariate Behav Res. 2011 Apr 11;46(2):303-39. doi: 10.1080/00273171.2011.563697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验