Suppr超能文献

基于肿瘤转录组学和组织病理学的全癌肿瘤免疫激活预测及对免疫检查点阻断的反应

Pan-cancer prediction of tumor immune activation and response to immune checkpoint blockade from tumor transcriptomics and histopathology.

作者信息

Mukherjee Sumit, Patiyal Sumeet, Pal Lipika R, Chang Tian-Gen, Biswas Sumona, Dhruba Saugato Rahman, Stemmer Amos, Singh Arashdeep, Yousefi-Rad Abbas, Chen Tien-Hua, Wang Binbin, Marino Denis, Shon Wonwoo, Yuan Yuan, Faries Mark, Hamid Omid, Reckamp Karen, Waissengrin Barliz, Ornelas Beatriz, Chu Pen-Yuan, Boudjadi Salah, Ley Lisa, Akbulut Dilara, Ahmar Nourhan El, Signoretti Sabina, Braun David A, Joo Hyunjeong, Kim Hyungsoo, Osipov Arsen, Figlin Robert A, Bar Jair, Barshack Iris, Day Chi-Ping, Sargsyan Karine, Apolo Andrea B, Aldape Kenneth, Yang Muh-Hwa, Atkins Michael B, Ronai Ze'ev A, Hoang Danh-Tai, Ruppin Eytan

出版信息

bioRxiv. 2025 Jun 30:2025.06.27.661875. doi: 10.1101/2025.06.27.661875.

Abstract

Accurately predicting which patients will respond to immune checkpoint blockade (ICB) remains a major challenge. Here, we present TIME_ACT, an unsupervised 66-gene transcriptomic signature of tumor immune activation derived from TCGA melanoma data. First, TIME_ACT scores accurately identify tumors with activated immune microenvironments across cancer types. Analysis of spatial features of the tumor microenvironment revealed that TIME_ACT-high regions exhibit dense lymphocyte infiltration near tumor cells, indicating localized immune activation. Second, in 15 anti-PD1 transcriptomic cohorts spanning six cancer types, TIME_ACT outperforms 22 established signatures and methods, achieving a mean AUC of 0.76 and a clinically meaningful mean odds ratio of 6.11. Thirdly, TIME_ACT scores can be accurately inferred from tumor histopathology slides. Finally, slide-inferred TIME_ACT scores predict ICB response across eight unseen cohorts, achieving a mean AUC of 0.72 and a mean odds ratio of 5.02. These findings establish TIME_ACT as a robust, pan-cancer, and low-cost predictor of ICB response.

摘要

准确预测哪些患者会对免疫检查点阻断(ICB)产生反应仍然是一项重大挑战。在此,我们展示了TIME_ACT,这是一种从TCGA黑色素瘤数据中得出的、用于肿瘤免疫激活的无监督66基因转录组特征。首先,TIME_ACT评分能够准确识别跨癌症类型的具有激活免疫微环境的肿瘤。对肿瘤微环境的空间特征分析表明,TIME_ACT高的区域在肿瘤细胞附近表现出密集的淋巴细胞浸润,表明局部免疫激活。其次,在涵盖六种癌症类型的15个抗PD1转录组队列中,TIME_ACT优于22种已确立的特征和方法,平均AUC为0.76,临床意义上的平均优势比为6.11。第三,TIME_ACT评分可以从肿瘤组织病理学切片中准确推断出来。最后,通过切片推断的TIME_ACT评分在八个未见队列中预测ICB反应,平均AUC为0.72,平均优势比为5.02。这些发现确立了TIME_ACT作为一种强大的、泛癌的、低成本的ICB反应预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/12312174/bfd2521f68ef/nihpp-2025.06.27.661875v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验