Mukherjee Sumit, Patiyal Sumeet, Pal Lipika R, Chang Tian-Gen, Biswas Sumona, Dhruba Saugato Rahman, Stemmer Amos, Singh Arashdeep, Yousefi-Rad Abbas, Chen Tien-Hua, Wang Binbin, Marino Denis, Shon Wonwoo, Yuan Yuan, Faries Mark, Hamid Omid, Reckamp Karen, Waissengrin Barliz, Ornelas Beatriz, Chu Pen-Yuan, Boudjadi Salah, Ley Lisa, Akbulut Dilara, Ahmar Nourhan El, Signoretti Sabina, Braun David A, Joo Hyunjeong, Kim Hyungsoo, Osipov Arsen, Figlin Robert A, Bar Jair, Barshack Iris, Day Chi-Ping, Sargsyan Karine, Apolo Andrea B, Aldape Kenneth, Yang Muh-Hwa, Atkins Michael B, Ronai Ze'ev A, Hoang Danh-Tai, Ruppin Eytan
bioRxiv. 2025 Jun 30:2025.06.27.661875. doi: 10.1101/2025.06.27.661875.
Accurately predicting which patients will respond to immune checkpoint blockade (ICB) remains a major challenge. Here, we present TIME_ACT, an unsupervised 66-gene transcriptomic signature of tumor immune activation derived from TCGA melanoma data. First, TIME_ACT scores accurately identify tumors with activated immune microenvironments across cancer types. Analysis of spatial features of the tumor microenvironment revealed that TIME_ACT-high regions exhibit dense lymphocyte infiltration near tumor cells, indicating localized immune activation. Second, in 15 anti-PD1 transcriptomic cohorts spanning six cancer types, TIME_ACT outperforms 22 established signatures and methods, achieving a mean AUC of 0.76 and a clinically meaningful mean odds ratio of 6.11. Thirdly, TIME_ACT scores can be accurately inferred from tumor histopathology slides. Finally, slide-inferred TIME_ACT scores predict ICB response across eight unseen cohorts, achieving a mean AUC of 0.72 and a mean odds ratio of 5.02. These findings establish TIME_ACT as a robust, pan-cancer, and low-cost predictor of ICB response.
准确预测哪些患者会对免疫检查点阻断(ICB)产生反应仍然是一项重大挑战。在此,我们展示了TIME_ACT,这是一种从TCGA黑色素瘤数据中得出的、用于肿瘤免疫激活的无监督66基因转录组特征。首先,TIME_ACT评分能够准确识别跨癌症类型的具有激活免疫微环境的肿瘤。对肿瘤微环境的空间特征分析表明,TIME_ACT高的区域在肿瘤细胞附近表现出密集的淋巴细胞浸润,表明局部免疫激活。其次,在涵盖六种癌症类型的15个抗PD1转录组队列中,TIME_ACT优于22种已确立的特征和方法,平均AUC为0.76,临床意义上的平均优势比为6.11。第三,TIME_ACT评分可以从肿瘤组织病理学切片中准确推断出来。最后,通过切片推断的TIME_ACT评分在八个未见队列中预测ICB反应,平均AUC为0.72,平均优势比为5.02。这些发现确立了TIME_ACT作为一种强大的、泛癌的、低成本的ICB反应预测指标。