de Moraes Reiner Silveira, Dércore Benevenuto Luíz Guilherme, Maia Suellen Rodrigues, de Azevedo Maria Gabriela Picelli, de Moura Fernanda Barthelson Carvalho, Ribeiro Diego, Melchert Alessandra, García Henry David Mogollón, Giuffrida Rogério, Okamoto Adriano Sakai, Chalfun Guimarães Okamoto Priscylla Tatiana
Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
Sci Rep. 2025 Aug 2;15(1):28211. doi: 10.1038/s41598-025-12360-5.
Time series analysis can be used to understand and forecast patterns in sequential data. This study evaluated three statistical models-ARIMA, Holt-Winters, and linear regression-on the time series of urethral obstruction (UO) cases in male cats treated at the Veterinary Teaching Hospital - São Paulo State University, Botucatu, Brazil. Among the 5,230 cats evaluated between 2010 and 2020, the prevalence of UO in male cats was 7.4% (95% CI: 6.7-8.1%), and the incidence among cats showing lower urinary tract signs was 36.0% (95% CI: 33.19-38.93%). Most affected cats were neutered (60.94%), with a mean body weight of 4.24 ± 1.11 kg and higher body condition scores. ARIMA closely followed historical data but was ineffective for future forecasting, showing a flat projection from 2021 to 2024 (rate: 0.64) despite past fluctuations. The Holt-Winters model projected a rise in UO cases, from 0.70 (95% CI: 0.43-0.97) in 2021 to 1.09 (95% CI: 0.38-1.79) in 2024, but its wide confidence intervals indicated potential overestimation. Meanwhile, linear regression revealed a significant annual increase of 2.6% in UO cases (p = 0.042), explaining 38% of the variance and offering a more accurate long-term forecast, and then, was considered the most suitable model, capturing trends without overestimating future rates. These findings support improved surveillance, clinical protocols, preventive strategies, and hospital resource planning for managing UO in male cats in a teaching veterinary hospital scenario.
时间序列分析可用于理解和预测序列数据中的模式。本研究评估了三种统计模型——自回归积分移动平均模型(ARIMA)、霍尔特-温特斯模型和线性回归——用于巴西圣保罗州立大学博图卡图兽医学院教学医院治疗的雄性猫尿道梗阻(UO)病例的时间序列。在2010年至2020年评估的5230只猫中,雄性猫的UO患病率为7.4%(95%置信区间:6.7 - 8.1%),在出现下尿路症状的猫中的发病率为36.0%(95%置信区间:33.19 - 38.93%)。大多数受影响的猫已绝育(60.94%),平均体重为4.24±1.11千克,身体状况评分较高。ARIMA紧密跟踪历史数据,但对未来预测无效,尽管过去有波动,但从2021年到2024年呈现平稳预测(比率:0.64)。霍尔特-温特斯模型预测UO病例会增加,从2021年的0.70(95%置信区间:0.43 - 0.97)增加到2024年的1.09(95%置信区间:0.38 - 1.79),但其较宽的置信区间表明可能存在高估。同时,线性回归显示UO病例每年显著增加2.6%(p = 0.042),解释了38%的方差并提供了更准确的长期预测,因此被认为是最合适的模型,能够捕捉趋势而不过高估计未来发病率。这些发现支持在教学兽医医院场景中改进对雄性猫UO的监测、临床方案、预防策略和医院资源规划。