Schamoni-Kast Kira, Uetrecht Charlotte
CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Leibniz Institute of Virology and University of Lübeck, Notkestraße 85, 22607 Hamburg, Germany; Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Leibniz Institute of Virology and University of Lübeck, Notkestraße 85, 22607 Hamburg, Germany; Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
J Mol Biol. 2025 Aug 5:169370. doi: 10.1016/j.jmb.2025.169370.
Polyprotein processing is a common strategy in many positive sense single-stranded RNA ((+)ssRNA) viruses. This highly regulated process is crucial for viral progeny and ensures the release of functional replicase proteins in the correct location and at the right time. Coronaviruses (CoVs) have one of the largest genomes on average among (+)ssRNA viruses requiring a unique replication-transcription complex (RTC) with proofreading function that prevents error catastrophe. Two thirds of the CoV genome encode for the non-structural proteins (nsps) that drive replication. These are directly synthesized by RNA genome translation after infection as two large polyproteins pp1a and pp1ab. A regulated polyprotein proteolytic auto-processing is essential for viral growth and always has been an interesting target for therapeutics. Here, we present an overview of polyprotein processing and RTC research in CoVs in vitro and in vivo over the last 30 years. We highlight cutting-edge methodologies such as super resolution microscopy or structural mass spectrometry approaches and demonstrate how these have contributed to polyprotein research, e.g. by providing comprehensive structural models. We illustrate exciting examples of polyprotein processing in other viruses that could be transferred to CoVs, too. Additionally, we identify critical knowledge gaps in polyprotein processing and RTC assembly, proposing future perspectives to address these limitations.
多聚蛋白加工是许多正链单链RNA((+)ssRNA)病毒的常见策略。这一高度调控的过程对病毒后代至关重要,并确保功能性复制酶蛋白在正确的位置和合适的时间释放。冠状病毒(CoV)在(+)ssRNA病毒中平均拥有最大的基因组之一,需要一个具有校对功能的独特复制转录复合体(RTC)来防止错误灾难。三分之二的CoV基因组编码驱动复制的非结构蛋白(nsps)。这些蛋白在感染后通过RNA基因组翻译直接合成为两个大的多聚蛋白pp1a和pp1ab。受调控的多聚蛋白蛋白水解自加工对于病毒生长至关重要,并且一直是治疗学的一个有趣靶点。在这里,我们概述了过去30年中在体外和体内对CoV多聚蛋白加工和RTC的研究。我们重点介绍了超分辨率显微镜或结构质谱分析等前沿方法,并展示了这些方法如何为多聚蛋白研究做出贡献,例如通过提供全面的结构模型。我们还举例说明了其他病毒中多聚蛋白加工的令人兴奋的例子,这些例子也可以应用于CoV。此外,我们确定了多聚蛋白加工和RTC组装中的关键知识空白,并提出了解决这些局限性的未来展望。