文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

住院患者非计划入住重症监护病房及死亡的动态预测模型的开发

Development of a dynamic prediction model for unplanned ICU admission and mortality in hospitalized patients.

作者信息

Placido Davide, Thorsen-Meyer Hans-Christian, Kaas-Hansen Benjamin Skov, Reguant Roc, Brunak Søren

机构信息

Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark.

Department of Intensive Care Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

出版信息

PLOS Digit Health. 2023 Jun 9;2(6):e0000116. doi: 10.1371/journal.pdig.0000116. eCollection 2023 Jun.


DOI:10.1371/journal.pdig.0000116
PMID:37294826
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10256150/
Abstract

Frequent assessment of the severity of illness for hospitalized patients is essential in clinical settings to prevent outcomes such as in-hospital mortality and unplanned admission to the intensive care unit (ICU). Classical severity scores have been developed typically using relatively few patient features. Recently, deep learning-based models demonstrated better individualized risk assessments compared to classic risk scores, thanks to the use of aggregated and more heterogeneous data sources for dynamic risk prediction. We investigated to what extent deep learning methods can capture patterns of longitudinal change in health status using time-stamped data from electronic health records. We developed a deep learning model based on embedded text from multiple data sources and recurrent neural networks to predict the risk of the composite outcome of unplanned ICU transfer and in-hospital death. The risk was assessed at regular intervals during the admission for different prediction windows. Input data included medical history, biochemical measurements, and clinical notes from a total of 852,620 patients admitted to non-intensive care units in 12 hospitals in Denmark's Capital Region and Region Zealand during 2011-2016 (with a total of 2,241,849 admissions). We subsequently explained the model using the Shapley algorithm, which provides the contribution of each feature to the model outcome. The best model used all data modalities with an assessment rate of 6 hours, a prediction window of 14 days and an area under the receiver operating characteristic curve of 0.898. The discrimination and calibration obtained with this model make it a viable clinical support tool to detect patients at higher risk of clinical deterioration, providing clinicians insights into both actionable and non-actionable patient features.

摘要

在临床环境中,对住院患者的病情严重程度进行频繁评估对于预防诸如院内死亡和意外入住重症监护病房(ICU)等不良后果至关重要。经典的严重程度评分通常使用相对较少的患者特征来制定。最近,基于深度学习的模型与经典风险评分相比,在个性化风险评估方面表现更优,这得益于使用聚合的、更多样化的数据源进行动态风险预测。我们研究了深度学习方法在多大程度上可以利用电子健康记录中的时间戳数据捕捉健康状况的纵向变化模式。我们基于来自多个数据源的嵌入式文本和循环神经网络开发了一个深度学习模型,以预测意外ICU转运和院内死亡这一复合结局的风险。在入院期间针对不同的预测窗口定期评估风险。输入数据包括病史、生化测量结果以及来自丹麦首都地区和西兰岛地区12家医院非重症监护病房收治的852,620名患者的临床记录(总共2,241,849次入院)。随后,我们使用Shapley算法对模型进行了解释,该算法可提供每个特征对模型结果的贡献。最佳模型使用了所有数据模式,评估间隔为6小时,预测窗口为14天,受试者操作特征曲线下面积为0.898。该模型获得的区分度和校准度使其成为一种可行的临床支持工具,用于检测临床恶化风险较高的患者,为临床医生提供有关可采取行动和不可采取行动的患者特征的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/c019f89e94e9/pdig.0000116.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/c28baaed53b2/pdig.0000116.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/cee7c353c592/pdig.0000116.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/8872139a9f7a/pdig.0000116.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/bc576877c5bb/pdig.0000116.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/c019f89e94e9/pdig.0000116.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/c28baaed53b2/pdig.0000116.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/cee7c353c592/pdig.0000116.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/8872139a9f7a/pdig.0000116.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/bc576877c5bb/pdig.0000116.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb5/10256150/c019f89e94e9/pdig.0000116.g005.jpg

相似文献

[1]
Development of a dynamic prediction model for unplanned ICU admission and mortality in hospitalized patients.

PLOS Digit Health. 2023-6-9

[2]
Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

Lancet Digit Health. 2020-4

[3]
Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.

Lancet Digit Health. 2023-10

[4]
Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory.

PLoS One. 2019-7-8

[5]
Development and Validation of a Robust and Interpretable Early Triaging Support System for Patients Hospitalized With COVID-19: Predictive Algorithm Modeling and Interpretation Study.

J Med Internet Res. 2024-1-11

[6]
Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records.

Lancet Digit Health. 2019-6

[7]
Improving the Prognostic Evaluation Precision of Hospital Outcomes for Heart Failure Using Admission Notes and Clinical Tabular Data: Multimodal Deep Learning Model.

J Med Internet Res. 2024-5-2

[8]
Electronic health record machine learning model predicts trauma inpatient mortality in real time: A validation study.

J Trauma Acute Care Surg. 2022-1-1

[9]
Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study.

J Med Internet Res. 2021-8-11

[10]
Testing a digital system that ranks the risk of unplanned intensive care unit admission in all ward patients: protocol for a prospective observational cohort study.

BMJ Open. 2019-9-11

引用本文的文献

[1]
Unplanned intensive care unit admissions in trauma patients: A critical appraisal.

World J Crit Care Med. 2025-9-9

[2]
AI-Driven Integration of Deep Learning With Lung Imaging, Functional Analysis, and Blood Gas Metrics for Perioperative Hypoxemia Prediction.

JMIR Med Inform. 2025-8-22

本文引用的文献

[1]
Population-wide analysis of hospital laboratory tests to assess seasonal variation and temporal reference interval modification.

Patterns (N Y). 2023-6-28

[2]
Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records.

Nat Protoc. 2021-6

[3]
Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

Lancet Digit Health. 2020-4

[4]
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model.

NPJ Digit Med. 2020-11-13

[5]
Explainable artificial intelligence model to predict acute critical illness from electronic health records.

Nat Commun. 2020-7-31

[6]
Early detection of sepsis utilizing deep learning on electronic health record event sequences.

Artif Intell Med. 2020-4

[7]
Detecting Patient Deterioration Using Artificial Intelligence in a Rapid Response System.

Crit Care Med. 2020-4

[8]
Deep Interpretable Early Warning System for the Detection of Clinical Deterioration.

IEEE J Biomed Health Inform. 2019-9-19

[9]
A clinically applicable approach to continuous prediction of future acute kidney injury.

Nature. 2019-7-31

[10]
Reporting accuracy of rare event classifiers.

NPJ Digit Med. 2018-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索