功能近红外光谱技术(fNIRS)的可重复性会因数据质量、分析流程和研究人员经验的不同而有所变化。
fNIRS reproducibility varies with data quality, analysis pipelines, and researcher experience.
作者信息
Yücel Meryem A, Luke Robert, Mesquita Rickson C, von Lühmann Alexander, Mehler David M A, Lührs Michael, Gemignani Jessica, Abdalmalak Androu, Albrecht Franziska, de Almeida Ivo Iara, Artemenko Christina, Ashton Kira, Augustynowicz Paweł, Bajracharya Aahana, Bannier Elise, Barth Beatrix, Bayet Laurie, Behrendt Jacqueline, Khani Hadi Borj, Borot Lenaic, Borrell Jordan A, Brigadoi Sabrina, Brink Kolby, Bulgarelli Chiara, Caruyer Emmanuel, Chen Hsin-Chin, Copeland Christopher, Corouge Isabelle, Cutini Simone, Di Lorenzo Renata, Dresler Thomas, Eggebrecht Adam T, Ehlis Ann-Christine, Erdoğan Sinem B, Evenblij Danielle, Ferdous Talukdar Raian, Fracalossi Victoria, Franzén Erika, Gallagher Anne, Gerloff Christian, Gervain Judit, Goldhamer Noy, Gossé Louisa K, Guérin Ségolène M R, Guevara Edgar, Hosseini S M Hadi, Innes-Brown Hamish, Int-Veen Isabell, Jaffe-Dax Sagi, Jégou Nolwenn, Kawaguchi Hiroshi, Kelsey Caroline, Kent Michaela, Kessler Roman, Kherbawy Nadeen, Klein Franziska, Kochavi Nofar, Kolisnyk Matthew, Koren Yogev, Kroczek Agnes, Kvist Alexander, Lin Chen-Hao Paul, Löw Andreas, Luan Siying, Mao Darren, Martins Giovani G, Middell Eike, Montero-Hernandez Samuel, Mutlu Murat Can, Novi Sergio L, Paquette Natacha, Paranawithana Ishara, Parmet Yisrael, Peelle Jonathan E, Peng Ke, Peng Tommy, Pereira João, Pinti Paola, Pollonini Luca, Jounghani Ali Rahimpour, Reindl Vanessa, Ringels Wiebke, Schopp Betti, Schulte Alina, Schulte-Rüther Martin, Segel Ari, Ala Tirdad Seifi, Shader Maureen J, Shavit Hadas, Sherafati Arefeh, Soltanlou Mojtaba, Sorger Bettina, Speh Emma, Stubbs Kevin D, Stute Katharina, Sullivan Eileen F, Tak Sungho, Tipado Zeus, Tremblay Julie, Vahidi Homa, Van Eeckhoutte Maaike, Vannasing Phetsamone, Vergotte Gregoire, Vincent Marion A, Weiss Eileen, Yang Dalin, Yükselen Gülnaz, Zapała Dariusz, Zemanek Vit
机构信息
Boston University, Neurophotonics Center, Boston, MA, USA.
Department of Biomedical Engineering, College of Engineering, Boston University, Boston, MA, USA.
出版信息
Commun Biol. 2025 Aug 4;8(1):1149. doi: 10.1038/s42003-025-08412-1.
As data analysis pipelines grow more complex in brain imaging research, understanding how methodological choices affect results is essential for ensuring reproducibility and transparency. This is especially relevant for functional Near-Infrared Spectroscopy (fNIRS), a rapidly growing technique for assessing brain function in naturalistic settings and across the lifespan, yet one that still lacks standardized analysis approaches. In the fNIRS Reproducibility Study Hub (FRESH) initiative, we asked 38 research teams worldwide to independently analyze the same two fNIRS datasets. Despite using different pipelines, nearly 80% of teams agreed on group-level results, particularly when hypotheses were strongly supported by literature. Teams with higher self-reported analysis confidence, which correlated with years of fNIRS experience, showed greater agreement. At the individual level, agreement was lower but improved with better data quality. The main sources of variability were related to how poor-quality data were handled, how responses were modeled, and how statistical analyses were conducted. These findings suggest that while flexible analytical tools are valuable, clearer methodological and reporting standards could greatly enhance reproducibility. By identifying key drivers of variability, this study highlights current challenges and offers direction for improving transparency and reliability in fNIRS research.
随着脑成像研究中的数据分析流程变得越来越复杂,了解方法选择如何影响结果对于确保可重复性和透明度至关重要。这对于功能近红外光谱技术(fNIRS)尤为重要,该技术是一种在自然环境和整个生命周期中评估脑功能的快速发展的技术,但仍缺乏标准化的分析方法。在fNIRS可重复性研究中心(FRESH)计划中,我们邀请了全球38个研究团队独立分析相同的两个fNIRS数据集。尽管使用了不同的分析流程,但近80%的团队在组水平结果上达成了一致,尤其是当假设得到文献的有力支持时。自我报告分析信心较高的团队(这与fNIRS经验年限相关)表现出更高的一致性。在个体水平上,一致性较低,但随着数据质量的提高而有所改善。变异性的主要来源与低质量数据的处理方式、反应的建模方式以及统计分析的进行方式有关。这些发现表明,虽然灵活的分析工具很有价值,但更清晰的方法和报告标准可以大大提高可重复性。通过识别变异性的关键驱动因素,本研究突出了当前的挑战,并为提高fNIRS研究的透明度和可靠性提供了方向。