Song Jaeyoon, Ahmed Falguni, Kim Jinsik
Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea.
Small. 2025 Sep;21(38):e04955. doi: 10.1002/smll.202504955. Epub 2025 Aug 5.
This review critically analyzes various 2D materials-either synthesized or exfoliated from bulk 3D counterparts-for electrochemical and electrical biosensing applications. Each material exhibits unique electrochemical properties and benefits from its inherent 2D features, enabling abundant active sites for biomolecule interaction. Key challenges include synthesizing or exfoliating these materials and processing them for the cost-effective and scalable production of biosensors. Additionally, the functionalization of 2D materials is crucial for effective bioreceptor immobilization, which directly affects selectivity, sensitivity, and overall performance. Certain 2D materials are better suited for specific sensing applications. For instance, 2D metal-organic frameworks or covalent organic frameworks show potential in electrochemical sensing due to their porous structures and high density of active sites. Transition metal dichalcogenides, such as MoS and WS, show promise for field-effect transistor-based biosensors. Reduced graphene oxide and MXenes, with tunable surface functionalities, show promise for both electrical and electrochemical sensing platforms. Monoelemental 2D materials (Xenes) hold dual-sensing potential, though synthesis and stability remain challenges for some. Hydrogenated Xenes offer improved stability, semiconducting behavior, and functionalization potential, making them strong candidates for biosensing. This review highlights these challenges and advantages while providing perspectives and future directions for optimizing 2D materials in biosensor development.
本综述批判性地分析了各种二维材料(无论是从块状三维材料合成还是剥离而来)在电化学和电化学生物传感应用中的情况。每种材料都具有独特的电化学特性,并受益于其固有的二维特征,从而为生物分子相互作用提供了丰富的活性位点。关键挑战包括合成或剥离这些材料,以及对其进行加工以实现生物传感器的经济高效且可扩展的生产。此外,二维材料的功能化对于有效的生物受体固定至关重要,这直接影响选择性、灵敏度和整体性能。某些二维材料更适合特定的传感应用。例如,二维金属有机框架或共价有机框架由于其多孔结构和高密度的活性位点,在电化学传感中显示出潜力。过渡金属二硫属化物(如 MoS 和 WS)在基于场效应晶体管的生物传感器方面显示出前景。具有可调表面功能的还原氧化石墨烯和 MXenes 在电传感和电化学生物传感平台方面都显示出前景。单元素二维材料(Xenes)具有双重传感潜力,尽管对于某些材料而言,合成和稳定性仍然是挑战。氢化 Xenes 具有更高的稳定性、半导体行为和功能化潜力,使其成为生物传感的有力候选材料。本综述强调了这些挑战和优势,同时为在生物传感器开发中优化二维材料提供了观点和未来方向。