Forchhammer Stephan, Abu-Ghazaleh Amar, Metzler Gisela, Garbe Claus, Eigentler Thomas
Eberhardt Karls Universität, Universitäts-Hautklinik, 72076 Tübingen, Germany.
Zentrum für Dermatohistologie und Oralpathologie Tübingen/Würzburg, 72072 Tübingen, Germany.
Cancers (Basel). 2022 Apr 29;14(9):2243. doi: 10.3390/cancers14092243.
The increasing number of melanoma patients makes it necessary to establish new strategies for prognosis assessment to ensure follow-up care. Deep-learning-based image analysis of primary melanoma could be a future component of risk stratification.
To develop a risk score for overall survival based on image analysis through artificial intelligence (AI) and validate it in a test cohort.
Hematoxylin and eosin (H&E) stained sections of 831 melanomas, diagnosed from 2012-2015 were photographed and used to perform deep-learning-based group classification. For this purpose, the freely available software of Google's teachable machine was used. Five hundred patient sections were used as the training cohort, and 331 sections served as the test cohort.
Using Google's Teachable Machine, a prognosis score for overall survival could be developed that achieved a statistically significant prognosis estimate with an AUC of 0.694 in a ROC analysis based solely on image sections of approximately 250 × 250 µm. The prognosis group "low-risk" ( = 230) showed an overall survival rate of 93%, whereas the prognosis group "high-risk" ( = 101) showed an overall survival rate of 77.2%.
The study supports the possibility of using deep learning-based classification systems for risk stratification in melanoma. The AI assessment used in this study provides a significant risk estimate in melanoma, but it does not considerably improve the existing risk classification based on the TNM classification.
黑色素瘤患者数量不断增加,因此有必要建立新的预后评估策略以确保后续治疗。基于深度学习的原发性黑色素瘤图像分析可能成为未来风险分层的一个组成部分。
通过人工智能(AI)基于图像分析制定总生存风险评分,并在一个测试队列中进行验证。
对2012年至2015年诊断的831例黑色素瘤的苏木精和伊红(H&E)染色切片进行拍照,并用于基于深度学习的分组分类。为此,使用了谷歌可教机器的免费软件。500例患者的切片用作训练队列,331例切片用作测试队列。
使用谷歌可教机器,可以制定出一个总生存预后评分,在仅基于约250×250µm图像切片的ROC分析中,该评分实现了具有统计学意义的预后估计,AUC为0.694。“低风险”预后组(n = 230)的总生存率为93%,而“高风险”预后组(n = 101)的总生存率为77.2%。
该研究支持在黑色素瘤风险分层中使用基于深度学习的分类系统的可能性。本研究中使用的人工智能评估在黑色素瘤中提供了显著的风险估计,但并未显著改善基于TNM分类的现有风险分类。