Suppr超能文献

基于连续小波变换(CWT)和卷积神经网络(CNN)的振动时频特性润滑状态识别

Lubrication state identification of vibration time-frequency characteristics based on CWT and CNN.

作者信息

Yu Haijie, Wei Haijun

机构信息

Yazhou Bay Innovation Institute, International Navigation College, Hainan Tropical Ocean University, Sanya, 572022, China.

Merchant Marine College, Shanghai Maritime University, 1550 Haigang Av. Shanghai, 201306, Shanghai, China.

出版信息

Sci Rep. 2025 Aug 7;15(1):28936. doi: 10.1038/s41598-025-14593-w.

Abstract

Proper lubrication is critical for ensuring the reliability and longevity of mechanical systems, yet its degradation due to factors like contamination or insufficient lubricant often leads to equipment failure. This study proposes a novel approach integrating Continuous Wavelet Transform (CWT) and Convolutional Neural Networks (CNN) for robust lubrication state identification. Vibration signals were collected from a pin-disk tribological system under three lubrication states: normal (NL), insufficient (IL), and contaminated (LC). CWT was applied to convert raw signals into time-frequency diagrams, which were preprocessed and input into a CNN model. The CNN architecture, comprising three convolutional layers, max pooling, and fully connected layers, was trained using the Adam optimizer with early stopping to prevent overfitting. Results demonstrated exceptional performance: the model achieved 99.8% training accuracy and 100% test accuracy, significantly outperforming traditional methods (RMS + CNN: 63.8%; PSD + CNN: 73.4%; CWT + SVM: 76.3%). t-SNE visualization confirmed distinct feature separation among lubrication states, and the confusion matrix revealed flawless classification on the test set. The method's ability to capture time-frequency characteristics via CWT and leverage CNN's deep feature learning offers a highly accurate and reliable solution for real-world lubrication monitoring.

摘要

适当的润滑对于确保机械系统的可靠性和使用寿命至关重要,然而,由于污染或润滑剂不足等因素导致的润滑性能下降往往会导致设备故障。本研究提出了一种将连续小波变换(CWT)和卷积神经网络(CNN)相结合的新方法,用于可靠的润滑状态识别。在三种润滑状态下从销盘摩擦学系统收集振动信号:正常(NL)、不足(IL)和污染(LC)。应用CWT将原始信号转换为时频图,对其进行预处理并输入到CNN模型中。使用Adam优化器训练包含三个卷积层、最大池化层和全连接层的CNN架构,并采用早期停止防止过拟合。结果显示出卓越的性能:该模型在训练中达到了99.8%的准确率,在测试中达到了100%的准确率,显著优于传统方法(均方根值+CNN:63.8%;功率谱密度+CNN:73.4%;连续小波变换+支持向量机:76.3%)。t-SNE可视化证实了润滑状态之间明显的特征分离,混淆矩阵显示在测试集上分类无误。该方法通过连续小波变换捕获时频特征并利用卷积神经网络的深度特征学习能力,为实际润滑监测提供了一种高度准确和可靠的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验