Suppr超能文献

多元可变系数时空模型。

Multivariate varying coefficient spatiotemporal model.

作者信息

Qian Qi, Nguyen Danh V, Kürüm Esra, Rhee Connie M, Banerjee Sudipto, Li Yihao, Şentürk Damla

机构信息

Department of Biostatistics, University of California, Los Angeles, CA, USA.

Department of Medicine, University of California, Irvine, CA, USA.

出版信息

Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.

Abstract

As of 2020, 807,920 individuals in the U.S. had end-stage kidney disease (ESKD) with about 70% of patients on dialysis, a life-sustaining treatment. Dialysis patients experience high mortality rates where frequent hospitalizations are a major contributor to morbidity and mortality. There is growing interest in identifying the risk factors for the correlated outcomes of hospitalization and mortality among dialysis patients across the U.S. Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate varying coefficient spatiotemporal model to study the time dynamic effects of risk factors (e.g., urbanicity and area deprivation index) on the multivariate outcome of hospitalization and mortality rates, as a function of time on dialysis. While capturing time-varying effects of risk factors on the mean, the proposed model also incorporates spatiotemporal patterns of the residuals for efficient inference. Estimation is based on the fusion of functional principal component analysis and Markov Chain Monte Carlo techniques, following basis expansions of the varying coefficient functions and multivariate Karhunen-Loéve expansion of region-specific random deviations. The finite sample performance of the proposed method is studied through extensive simulations. Novel applications to the USRDS data highlight significant risk factors of hospitalizations and mortality as well as characterizing time periods on dialysis and spatial locations across U.S. with elevated hospitalization and mortality risks.

摘要

截至2020年,美国有807,920人患有终末期肾病(ESKD),约70%的患者接受透析,这是一种维持生命的治疗方法。透析患者死亡率很高,频繁住院是导致发病和死亡的主要因素。在美国,人们越来越关注确定透析患者住院和死亡相关结局的风险因素。利用美国肾脏数据系统(USRDS)的全国数据,我们提出了一种新颖的多元变系数时空模型,以研究风险因素(如城市化程度和地区贫困指数)对住院和死亡率多元结局的时间动态影响,该影响是透析时间的函数。在捕捉风险因素对均值的时变效应时,所提出的模型还纳入了残差的时空模式,以进行有效的推断。估计基于功能主成分分析和马尔可夫链蒙特卡罗技术的融合,在变系数函数的基展开和特定区域随机偏差的多元卡尔胡宁 - 勒夫展开之后进行。通过广泛的模拟研究了所提出方法的有限样本性能。对USRDS数据的新应用突出了住院和死亡的重要风险因素,以及在美国各地透析时间和空间位置上具有较高住院和死亡风险的特征。

相似文献

1
Multivariate varying coefficient spatiotemporal model.多元可变系数时空模型。
Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.
2
Multilevel Varying Coefficient Spatiotemporal Model.多层变系数时空模型
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.

本文引用的文献

2
Multilevel Varying Coefficient Spatiotemporal Model.多层变系数时空模型
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.
3
Epidemiology of haemodialysis outcomes.血液透析结局的流行病学。
Nat Rev Nephrol. 2022 Jun;18(6):378-395. doi: 10.1038/s41581-022-00542-7. Epub 2022 Feb 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验