Suppr超能文献

多层变系数时空模型

Multilevel Varying Coefficient Spatiotemporal Model.

作者信息

Li Yihao, Nguyen Danh V, Kürüm Esra, Rhee Connie M, Banerjee Sudipto, Şentürk Damla

机构信息

Department of Biostatistics, University of California, Los Angeles, CA 90095, USA.

Department of Medicine, University of California Irvine, Orange, CA 92868, USA.

出版信息

Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.

Abstract

Over 785,000 individuals in the U.S. have end-stage renal disease (ESRD) with about 70% of patients on dialysis, a life-sustaining treatment. Dialysis patients experience frequent hospitalizations. In order to identify risk factors of hospitalizations, we utilize data from the large national database, United States Renal Data System (USRDS). To account for the hierarchical structure of the data, with longitudinal hospitalization rates nested in dialysis facilities and dialysis facilities nested in geographic regions across the U.S., we propose a multilevel varying coefficient spatiotemporal model (M-VCSM) where region- and facility-specific random deviations are modeled through a multilevel Karhunen-Loéve (KL) expansion. The proposed M-VCSM includes time-varying effects of multilevel risk factors at the region- (e.g., urbanicity and area deprivation index) and facility-levels (e.g., patient demographic makeup) and incorporates spatial correlations across regions via a conditional autoregressive (CAR) structure. Efficient estimation and inference is achieved through the fusion of functional principal component analysis (FPCA) and Markov Chain Monte Carlo (MCMC). Applications to the USRDS data highlight significant region- and facility-level risk factors of hospitalizations and characterize time periods and spatial locations with elevated hospitalization risk. Finite sample performance of the proposed methodology is studied through simulations.

摘要

美国有超过78.5万人患有终末期肾病(ESRD),约70%的患者接受透析这种维持生命的治疗。透析患者经常住院。为了确定住院的风险因素,我们利用了来自大型国家数据库——美国肾脏数据系统(USRDS)的数据。考虑到数据的层次结构,纵向住院率嵌套在透析机构中,而透析机构又嵌套在美国各地的地理区域中,我们提出了一种多层次变系数时空模型(M-VCSM),其中特定区域和机构的随机偏差通过多层次卡尔胡宁-勒夫(KL)展开进行建模。所提出的M-VCSM包括区域层面(如城市化程度和地区贫困指数)和机构层面(如患者人口构成)的多层次风险因素的时变效应,并通过条件自回归(CAR)结构纳入各区域之间的空间相关性。通过功能主成分分析(FPCA)和马尔可夫链蒙特卡罗(MCMC)的融合实现了有效的估计和推断。对USRDS数据的应用突出了住院的显著区域和机构层面风险因素,并刻画了住院风险较高的时间段和空间位置。通过模拟研究了所提出方法的有限样本性能。

相似文献

1
Multilevel Varying Coefficient Spatiotemporal Model.多层变系数时空模型
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.

引用本文的文献

1
Multivariate varying coefficient spatiotemporal model.多元可变系数时空模型。
Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.

本文引用的文献

7
Longitudinal Functional Models with Structured Penalties.具有结构化惩罚的纵向功能模型
Stat Modelling. 2016 Apr;16(2):114-139. doi: 10.1177/1471082X15626291. Epub 2016 Feb 17.
8
A multi-dimensional functional principal components analysis of EEG data.脑电图数据的多维功能主成分分析
Biometrics. 2017 Sep;73(3):999-1009. doi: 10.1111/biom.12635. Epub 2017 Jan 10.
9
Functional CAR models for large spatially correlated functional datasets.用于大型空间相关功能数据集的功能CAR模型。
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
10
Functional Additive Mixed Models.功能加性混合模型
J Comput Graph Stat. 2015 Apr 1;24(2):477-501. doi: 10.1080/10618600.2014.901914.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验