Suppr超能文献

时间动态分析及其在透析患者医院再入院中的应用。

Time-dynamic profiling with application to hospital readmission among patients on dialysis.

作者信息

Estes Jason P, Nguyen Danh V, Chen Yanjun, Dalrymple Lorien S, Rhee Connie M, Kalantar-Zadeh Kamyar, Şentürk Damla

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

Department of Medicine, University of California, Irvine, Orange, California 92868, U.S.A.

出版信息

Biometrics. 2018 Dec;74(4):1383-1394. doi: 10.1111/biom.12908. Epub 2018 Jun 5.

Abstract

Standard profiling analysis aims to evaluate medical providers, such as hospitals, nursing homes, or dialysis facilities, with respect to a patient outcome. The outcome, for instance, may be mortality, medical complications, or 30-day (unplanned) hospital readmission. Profiling analysis involves regression modeling of a patient outcome, adjusting for patient health status at baseline, and comparing each provider's outcome rate (e.g., 30-day readmission rate) to a normative standard (e.g., national "average"). Profiling methods exist mostly for non time-varying patient outcomes. However, for patients on dialysis, a unique population which requires continuous medical care, methodologies to monitor patient outcomes continuously over time are particularly relevant. Thus, we introduce a novel time-dynamic profiling (TDP) approach to assess the time-varying 30-day readmission rate. TDP is used to estimate, for the first time, the risk-standardized time-dynamic 30-day hospital readmission rate, throughout the time period that patients are on dialysis. We develop the framework for TDP by introducing the standardized dynamic readmission ratio as a function of time and a multilevel varying coefficient model with facility-specific time-varying effects. We propose estimation and inference procedures tailored to the problem of TDP and to overcome the challenge of high-dimensional parameters when examining thousands of dialysis facilities.

摘要

标准概况分析旨在根据患者的治疗结果对医疗服务提供者进行评估,这些提供者包括医院、疗养院或透析机构等。例如,治疗结果可能是死亡率、医疗并发症或30天(非计划)再次入院率。概况分析涉及对患者治疗结果进行回归建模,对基线时的患者健康状况进行调整,并将每个提供者的治疗结果率(如30天再入院率)与一个规范标准(如全国“平均水平”)进行比较。概况分析方法大多适用于非随时间变化的患者治疗结果。然而,对于透析患者这一需要持续医疗护理的特殊人群,随着时间持续监测患者治疗结果的方法尤为重要。因此,我们引入了一种新颖的时间动态概况分析(TDP)方法来评估随时间变化的30天再入院率。TDP首次用于估计患者透析期间风险标准化的随时间动态变化的30天医院再入院率。我们通过引入作为时间函数的标准化动态再入院率以及具有特定机构随时间变化效应的多层次可变系数模型来构建TDP框架。我们针对TDP问题提出了估计和推断程序,以克服在检查数千家透析机构时高维参数带来的挑战。

相似文献

2
Profiling dialysis facilities for adverse recurrent events.分析透析设施的不良复发事件。
Stat Med. 2020 Apr 30;39(9):1374-1389. doi: 10.1002/sim.8482. Epub 2020 Jan 30.
3
Fixed Effects High-Dimensional Profiling Models in Low Information Context.低信息环境下的固定效应高维剖析模型
Int J Stat Med Res. 2021;10:118-131. doi: 10.6000/1929-6029.2021.10.11. Epub 2021 Sep 27.
10
Analysis of hospital readmissions with competing risks.分析具有竞争风险的医院再入院情况。
Stat Methods Med Res. 2022 Nov;31(11):2189-2200. doi: 10.1177/09622802221115879. Epub 2022 Jul 27.

引用本文的文献

1
Multivariate varying coefficient spatiotemporal model.多元可变系数时空模型。
Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.
5
Limitations of the Inter-Unit Reliability: A Set of Practical Examples.单位间信度的局限性:一组实际示例
Health Serv Outcomes Res Methodol. 2024 Jun;24(2):156-169. doi: 10.1007/s10742-023-00307-0. Epub 2023 Jun 28.
9
MEASURING PERFORMANCE FOR END-OF-LIFE CARE.衡量临终关怀的绩效。
Ann Appl Stat. 2022 Sep;16(3):1586-1607. doi: 10.1214/21-aoas1558. Epub 2022 Jul 19.

本文引用的文献

7
Generalized Multilevel Functional Regression.广义多级功能回归
J Am Stat Assoc. 2009 Dec 1;104(488):1550-1561. doi: 10.1198/jasa.2009.tm08564.
8
Statistical Methods with Varying Coefficient Models.具有变系数模型的统计方法
Stat Interface. 2008;1(1):179-195. doi: 10.4310/sii.2008.v1.n1.a15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验