Suppr超能文献

对透析人群的住院率和死亡率进行建模的多元时空功能主成分分析。

Multivariate spatiotemporal functional principal component analysis for modeling hospitalization and mortality rates in the dialysis population.

机构信息

Department of Biostatistics, University of California, Los Angeles, CA 90095, USA.

Department of Medicine, University of California, Irvine, CA 92868, USA.

出版信息

Biostatistics. 2024 Jul 1;25(3):718-735. doi: 10.1093/biostatistics/kxad013.

Abstract

Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality, and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends in the correlated outcomes of hospitalization and mortality among dialysis patients as a function of time starting from transition to dialysis across the United States Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal functional principal component analysis model to study the joint spatiotemporal patterns of hospitalization and mortality rates among dialysis patients. The proposal is based on a multivariate Karhunen-Loéve expansion that describes leading directions of variation across time and induces spatial correlations among region-specific scores. An efficient estimation procedure is proposed using only univariate principal components decompositions and a Markov Chain Monte Carlo framework for targeting the spatial correlations. The finite sample performance of the proposed method is studied through simulations. Novel applications to the USRDS data highlight hot spots across the United States with higher hospitalization and/or mortality rates and time periods of elevated risk.

摘要

与其他医疗保险人群相比,透析患者的住院频率和死亡率更高,而住院是导致发病率、死亡率和医疗保健成本的主要因素。患者通常也会在透析期间或直到进行肾脏移植后一直接受透析。因此,人们越来越关注研究美国透析患者住院和死亡相关结局的时空趋势,这些趋势是从开始透析到透析结束期间的函数。利用来自美国肾脏数据系统(USRDS)的全国性数据,我们提出了一种新颖的多元时空功能主成分分析模型,以研究透析患者住院率和死亡率的联合时空模式。该建议基于多元 Karhunen-Loéve 扩展,该扩展描述了随时间变化的主导方向,并在特定区域的分数之间诱导空间相关性。提出了一种仅使用单变量主成分分解和马尔可夫链蒙特卡罗框架的有效估计程序,以针对空间相关性。通过模拟研究了所提出方法的有限样本性能。对 USRDS 数据的新应用突出显示了美国各地的热点地区,这些地区的住院率和/或死亡率以及风险升高的时间段较高。

相似文献

3
Multilevel Varying Coefficient Spatiotemporal Model.
Stat. 2022 Dec;11(1). doi: 10.1002/sta4.438. Epub 2021 Nov 19.
4
Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease.
Lifetime Data Anal. 2024 Oct;30(4):827-852. doi: 10.1007/s10985-024-09635-w. Epub 2024 Oct 4.
5
6
Modeling time-varying effects of multilevel risk factors of hospitalizations in patients on dialysis.
Stat Med. 2018 Dec 30;37(30):4707-4720. doi: 10.1002/sim.7950. Epub 2018 Sep 3.
8
Kidney Outcomes Among Medicare Beneficiaries After Hospitalization for Heart Failure.
JAMA Cardiol. 2024 Jul 1;9(7):667-672. doi: 10.1001/jamacardio.2024.1108.

引用本文的文献

1
Multivariate varying coefficient spatiotemporal model.
Stat Biosci. 2024 Dec;16(3):761-786. doi: 10.1007/s12561-024-09419-8. Epub 2024 Feb 21.
2
Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease.
Lifetime Data Anal. 2024 Oct;30(4):827-852. doi: 10.1007/s10985-024-09635-w. Epub 2024 Oct 4.

本文引用的文献

1
Multilevel hybrid principal components analysis for region-referenced functional electroencephalography data.
Stat Med. 2022 Aug 30;41(19):3737-3757. doi: 10.1002/sim.9445. Epub 2022 May 25.
2
A MULTIVARIATE SPATIOTEMPORAL CHANGE-POINT MODEL OF OPIOID OVERDOSE DEATHS IN OHIO.
Ann Appl Stat. 2021 Sep;15(3):1329-1342. doi: 10.1214/20-aoas1415. Epub 2021 Sep 23.
4
Joint space-time Bayesian disease mapping via quantification of disease risk association.
Stat Methods Med Res. 2021 Jan;30(1):35-61. doi: 10.1177/0962280220938975.
5
Modeling time-varying effects of multilevel risk factors of hospitalizations in patients on dialysis.
Stat Med. 2018 Dec 30;37(30):4707-4720. doi: 10.1002/sim.7950. Epub 2018 Sep 3.
6
Hybrid principal components analysis for region-referenced longitudinal functional EEG data.
Biostatistics. 2020 Jan 1;21(1):139-157. doi: 10.1093/biostatistics/kxy034.
7
Time-dynamic profiling with application to hospital readmission among patients on dialysis.
Biometrics. 2018 Dec;74(4):1383-1394. doi: 10.1111/biom.12908. Epub 2018 Jun 5.
8
MODELING TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA.
Ann Appl Stat. 2013;7(1):154-176. doi: 10.1214/12-AOAS600. Epub 2013 Apr 9.
9
Early mortality in patients starting dialysis appears to go unregistered.
Kidney Int. 2014 Aug;86(2):392-8. doi: 10.1038/ki.2014.15. Epub 2014 Feb 12.
10
Order-free co-regionalized areal data models with application to multiple-disease mapping.
J R Stat Soc Series B Stat Methodol. 2007 Nov 1;69(5):817-838. doi: 10.1111/j.1467-9868.2007.00612.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验