Suppr超能文献

基于多序列磁共振成像放射组学和深度学习特征预测宫颈癌淋巴结转移:一项双中心研究

Prediction of cervical cancer lymph node metastasis based on multisequence magnetic resonance imaging radiomics and deep learning features: a dual-center study.

作者信息

Luo Shigang, Guo Yan, Ye Yongqing, Mu Qinglin, Huang Wenguang, Tang Guangcai

机构信息

Department of Radiology, The First People's Hospital of Guangyuan, Guangyuan, Sichuan, China.

Department of Radiology, Affiliated Hospital of Southwest Medical University, Taiping Road, Jiangyang District, Luzhou, 646000, Sichuan, China.

出版信息

Sci Rep. 2025 Aug 10;15(1):29259. doi: 10.1038/s41598-025-13781-y.

Abstract

Cervical cancer is a leading cause of death from malignant tumors in women, and accurate evaluation of occult lymph node metastasis (OLNM) is crucial for optimal treatment. This study aimed to develop several predictive models-including Clinical model, Radiomics models (RD), Deep Learning models (DL), Radiomics-Deep Learning fusion models (RD-DL), and a Clinical-RD-DL combined model-for assessing the risk of OLNM in cervical cancer patients.The study included 130 patients from Center 1 (training set) and 55 from Center 2 (test set). Clinical data and imaging sequences (T1, T2, and DWI) were used to extract features for model construction. Model performance was assessed using the DeLong test, and SHAP analysis was used to examine feature contributions. Results showed that both the RD-combined (AUC = 0.803) and DL-combined (AUC = 0.818) models outperformed single-sequence models as well as the standalone Clinical model (AUC = 0.702). The RD-DL model yielded the highest performance, achieving an AUC of 0.981 in the training set and 0.903 in the test set. Notably, integrating clinical variables did not further improve predictive performance; the Clinical-RD-DL model performed comparably to the RD-DL model. SHAP analysis showed that deep learning features had the greatest impact on model predictions. Both RD and DL models effectively predict OLNM, with the RD-DL model offering superior performance. These findings provide a rapid, non-invasive clinical prediction method.

摘要

宫颈癌是女性恶性肿瘤死亡的主要原因之一,准确评估隐匿性淋巴结转移(OLNM)对于优化治疗至关重要。本研究旨在开发几种预测模型,包括临床模型、影像组学模型(RD)、深度学习模型(DL)、影像组学-深度学习融合模型(RD-DL)以及临床-RD-DL联合模型,用于评估宫颈癌患者发生OLNM的风险。该研究纳入了来自中心1的130例患者(训练集)和来自中心2的55例患者(测试集)。利用临床数据和影像序列(T1、T2和DWI)提取特征以构建模型。使用DeLong检验评估模型性能,并使用SHAP分析来检验特征贡献。结果显示,RD联合模型(AUC = 0.803)和DL联合模型(AUC = 0.818)均优于单序列模型以及独立的临床模型(AUC = 0.702)。RD-DL模型性能最高,在训练集中AUC达到0.981,在测试集中为0.903。值得注意的是,整合临床变量并未进一步提高预测性能;临床-RD-DL模型的表现与RD-DL模型相当。SHAP分析表明,深度学习特征对模型预测的影响最大。RD和DL模型均能有效预测OLNM,其中RD-DL模型性能更优。这些发现提供了一种快速、无创的临床预测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验