Min Huiting, Wang Kang, Wang Tiantian, Cheng Xinxiu, Habyarimana Ephrem, Wang Yongfei, Hu Die, Wang Yi-Hong, Wang Lihua
College of Agriculture, Anhui Science and Technology University, Chuzhou, Anhui, China.
International Joint Research Center of Forage Bio-Breeding in Anhui Province, Chuzhou, China.
Front Plant Sci. 2025 Jul 25;16:1629615. doi: 10.3389/fpls.2025.1629615. eCollection 2025.
Water is essential for plant growth, and drought is one of the most predominant constraints on crop yield. Sorghum is a well-known drought-tolerant crop model, and sorghum landraces possess novel alleles for local adaptation.
In this study, we evaluated a sorghum mini core panel of 239 landraces sampled globally for shoot and root growth under simulated drought conditions using 10% and 20% polyethylene glycol (PEG) in 2020 and 2024, and measured drought tolerance using the seedling tolerance coefficient (STC).
Phenotypic analysis showed that more accessions produced more roots than longer roots when exposed to 10% PEG; however, at 20% PEG, more accessions produced longer roots than more roots, reflecting the adaptability of some accessions to drought stress. However, PEG reduced shoot growth in all accessions in both years. A genome-wide association study (GWAS) on 32 growth and 19 STC traits identified 22 loci, 19 of which were mapped to the STC traits, and 17 of these 19 were associated with STC of shoot weight. Eleven of the 22 loci were collocated with 23 previously identified mapped drought-related quantitative trait loci (QTLs); 15 of these 23 QTLs were mapped to green leaf area, total number of green leaves, or chlorophyll content. We also found 19 candidate genes for 12 of the 22 loci. Five of those genes showed either preferential or specific expression in the roots according to GeneAtlas v2. One candidate gene from a locus colocated with a previously mapped chlorophyll fluorescence QTL has been shown to increase chlorophyll fluorescence in maize in another study. The results of this study lay the foundation for further characterizing the sorghum mini core panel for novel drought-tolerant genes.
水对植物生长至关重要,干旱是作物产量的最主要限制因素之一。高粱是一种著名的耐旱作物模型,高粱地方品种拥有用于本地适应的新等位基因。
在本研究中,我们于2020年和2024年使用10%和20%的聚乙二醇(PEG)在模拟干旱条件下评估了一个由239个全球采样的地方品种组成的高粱微型核心种质库的地上部和根系生长,并使用幼苗耐受系数(STC)测量耐旱性。
表型分析表明,当暴露于10% PEG时,更多的种质产生更多的根而非更长的根;然而,在20% PEG条件下,更多的种质产生更长的根而非更多的根,这反映了一些种质对干旱胁迫的适应性。然而,PEG在这两年中均降低了所有种质的地上部生长。对32个生长性状和19个STC性状进行的全基因组关联研究(GWAS)确定了22个位点,其中19个被定位到STC性状,这19个中的17个与地上部重量的STC相关。22个位点中的11个与23个先前鉴定的定位干旱相关数量性状位点(QTL)共定位;这23个QTL中的15个被定位到绿叶面积、绿叶总数或叶绿素含量。我们还为22个位点中的12个找到了19个候选基因。根据GeneAtlas v2,其中5个基因在根中表现出优先或特异性表达。在另一项研究中,一个与先前定位的叶绿素荧光QTL共定位的位点的一个候选基因已被证明可增加玉米中的叶绿素荧光。本研究结果为进一步鉴定高粱微型核心种质库中的新型耐旱基因奠定了基础。