Suppr超能文献

UFOS-Net利用小规模特征融合进行糖尿病足溃疡分割。

UFOS-Net leverages small-scale feature fusion for diabetic foot ulcer segmentation.

作者信息

Jiao Chenxu, Zhao Xiaodong, Li Lin, Wang Chiyu, Chen Yixin

机构信息

The School of Automation, Hangzhou Dianzi University, Hangzhou, 310000, China.

The Department of Endocrinology, Sir Run Run Shaw Hospital affiliated with Zhejiang University School of Medicine, Hangzhou, 310000, China.

出版信息

Sci Rep. 2025 Aug 11;15(1):29317. doi: 10.1038/s41598-025-12442-4.

Abstract

Diabetic Foot Ulcer (DFU) is a critical risk factor for disability and mortality among diabetic patients, posing a significant public health challenge. Existing DFU datasets are limited in capturing the diversity and complexity of ulcer manifestations, preventing advancements in medical segmentation. This paper introduces SRRSH-DF, a novel DFU dataset that comprehensively covers characteristic symptoms and lesions across different foot regions. Expert participation ensures precise data annotations and professional evaluations. Building on this dataset, we develope UFOS-Net, a segmentation model incorporating the EMS Block to enhance the identification of small-scale masks and feature details. Additionally, we propose MODA, an improved data augmentation method tailored to the unique characteristics of DFU images. Experimental results demonstrate that UFOS-Net, when trained on the DFUC2022 dataset, ranks highly on the leaderboard. More importantly, training on SRRSH-DF achieved a Dice coefficient of 0.7745, validating the dataset's broad applicability and the model's effectiveness. We will provide the dataset to researchers who have a need for this study. This initiative aims to promote high-quality research and accelerate the advancement of DFU diagnostic tools, ultimately improving patient outcomes and reducing the burden of DFU in healthcare systems.

摘要

糖尿病足溃疡(DFU)是糖尿病患者致残和死亡的关键风险因素,构成了重大的公共卫生挑战。现有的DFU数据集在捕捉溃疡表现的多样性和复杂性方面存在局限性,阻碍了医学分割技术的进步。本文介绍了SRRSH-DF,这是一个新颖的DFU数据集,全面涵盖了不同足部区域的特征症状和病变。专家参与确保了精确的数据标注和专业评估。基于这个数据集,我们开发了UFOS-Net,这是一个结合EMS模块的分割模型,以增强对小规模掩码和特征细节的识别。此外,我们提出了MODA,一种针对DFU图像独特特征量身定制的改进数据增强方法。实验结果表明,UFOS-Net在DFUC2022数据集上训练时,在排行榜上名列前茅。更重要的是,在SRRSH-DF上训练达到了0.7745的Dice系数,验证了该数据集的广泛适用性和模型的有效性。我们将把该数据集提供给有此研究需求的研究人员。这一举措旨在促进高质量研究,加速DFU诊断工具的进步,最终改善患者预后,减轻医疗系统中DFU的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c171/12339962/e22fa71430f0/41598_2025_12442_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验