Antoniac Iulian, Manescu Paltanea Veronica, Paltanea Gheorghe, Antoniac Aurora, Fosca Marco, Laptoiu Dan, Rau Julietta V
Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042, Bucharest, Romania.
Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094, Bucharest, Romania.
Bioact Mater. 2025 Jul 31;53:656-703. doi: 10.1016/j.bioactmat.2025.07.035. eCollection 2025 Nov.
Spinal fusion is considered today as the last treatment option for different spinal conditions, such as degenerative and infectious illnesses. It consists of fusing two or more vertebrae to obtain reinforcement/fixation based on several methods used to sustain osteosynthesis and grafting, such as cage insertion in the intervertebral space, which provides an important level of mechanical stability, impacting only a low amount of the natural biomechanics of the spine and facilitating the implant bony ingrowth. This review paper first explores the background of intervertebral fusion, emphasizing medical applications and material properties of interbody fusion cages. It then provides a brief historical overview and discusses antibacterial efficacy-related issues. Additionally, some of the most met-in-clinical practice lumbar interbody cages with a detailed description of their geometry and examples of clinical trials performed worldwide are provided. The biomaterials used in lumbar cage manufacture are comprehensively described. In the last part of this review paper, special attention is devoted to prospective biomaterials and coatings for spine fusion cages. Firstly, the rationale for using Mg-based alloys or high osteogenic polycaprolactone as biodegradable and bioresorbable alternatives in the spinal cage industry, addressing the clinical limitations of traditional Ti alloys and polyether ether ketone, is provided. Then, a more conservative approach, focusing on the use of bioactive or antibacterial coatings on the already certified biomaterials, is presented as a second alternative to the existing products on the market. Relevant literature studies are reviewed, and the osteointegrative, bioactive, or antibacterial character of the coatings is explained. Finally, our review identifies current clinical limitations and offers future perspectives that will provide better bioactive solutions, improving the existing biomaterials.
如今,脊柱融合术被视为针对不同脊柱疾病(如退行性疾病和感染性疾病)的最终治疗选择。它包括融合两个或多个椎骨,以通过多种用于维持骨合成和移植的方法来实现强化/固定,例如在椎间间隙插入椎间融合器,这提供了重要程度的机械稳定性,仅对脊柱的自然生物力学产生少量影响,并促进植入物的骨长入。这篇综述文章首先探讨了椎间融合的背景,强调了椎间融合器的医学应用和材料特性。然后提供了简要的历史概述并讨论了与抗菌功效相关的问题。此外,还介绍了一些在临床实践中最常用的腰椎椎间融合器,并详细描述了它们的几何形状以及在全球范围内进行的临床试验示例。全面描述了用于制造腰椎融合器的生物材料。在这篇综述文章的最后一部分,特别关注了脊柱融合器的前瞻性生物材料和涂层。首先,阐述了在脊柱融合器行业中使用镁基合金或高成骨聚己内酯作为可生物降解和可生物吸收替代品的基本原理,以解决传统钛合金和聚醚醚酮的临床局限性。然后,提出了一种更为保守的方法,即专注于在已获认证的生物材料上使用生物活性或抗菌涂层,作为市场上现有产品的第二种替代方案。对相关文献研究进行了综述,并解释了涂层的骨整合、生物活性或抗菌特性。最后,我们的综述确定了当前的临床局限性,并提供了未来的展望,这将提供更好的生物活性解决方案,改进现有的生物材料。