Suppr超能文献

基于非增强CT的深度学习用于主动脉粥样硬化评估:一项回顾性多中心研究。

Aortic atherosclerosis evaluation using deep learning based on non-contrast CT: A retrospective multi-center study.

作者信息

Yang Mingliang, Lyu Jinhao, Xiong Yongqin, Mei Aoxue, Hu Jianxing, Zhang Yue, Wang Xiaoyu, Bian Xiangbing, Huang Jiayu, Li Runze, Xing Xinbo, Su Sulian, Gao Junhang, Lou Xin

机构信息

School of Medical Technology, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China.

Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, Beijing 100853, China.

出版信息

iScience. 2025 Jul 12;28(8):113100. doi: 10.1016/j.isci.2025.113100. eCollection 2025 Aug 15.

Abstract

Non-contrast CT (NCCT) is widely used in clinical practice and holds potential for large-scale atherosclerosis screening, yet its application in detecting and grading aortic atherosclerosis remains limited. To address this, we propose Aortic-AAE, an automated segmentation system based on a cascaded attention mechanism within the nnU-Net framework. The cascaded attention module enhances feature learning across complex anatomical structures, outperforming existing attention modules. Integrated preprocessing and post-processing ensure anatomical consistency and robustness across multi-center data. Trained on 435 labeled NCCT scans from three centers and validated on 388 independent cases, Aortic-AAE achieved 81.12% accuracy in aortic stenosis classification and 92.37% in Agatston scoring of calcified plaques, surpassing five state-of-the-art models. This study demonstrates the feasibility of using deep learning for accurate detection and grading of aortic atherosclerosis from NCCT, supporting improved diagnostic decisions and enhanced clinical workflows.

摘要

非增强CT(NCCT)在临床实践中广泛应用,具有大规模动脉粥样硬化筛查的潜力,但其在检测和分级主动脉粥样硬化方面的应用仍然有限。为解决这一问题,我们提出了Aortic-AAE,这是一种基于nnU-Net框架内的级联注意力机制的自动分割系统。级联注意力模块增强了跨复杂解剖结构的特征学习,优于现有的注意力模块。集成的预处理和后处理确保了多中心数据的解剖一致性和鲁棒性。在来自三个中心的435份标注的NCCT扫描上进行训练,并在388个独立病例上进行验证,Aortic-AAE在主动脉狭窄分类中的准确率达到81.12%,在钙化斑块的阿加斯顿评分中的准确率达到92.37%,超过了五个先进模型。这项研究证明了使用深度学习从NCCT中准确检测和分级主动脉粥样硬化的可行性,有助于改善诊断决策和优化临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8708/12341578/785d3358fc44/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验