Yang Mingliang, Lyu Jinhao, Xiong Yongqin, Mei Aoxue, Hu Jianxing, Zhang Yue, Wang Xiaoyu, Bian Xiangbing, Huang Jiayu, Li Runze, Xing Xinbo, Su Sulian, Gao Junhang, Lou Xin
School of Medical Technology, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing 100081, China.
Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, Beijing 100853, China.
iScience. 2025 Jul 12;28(8):113100. doi: 10.1016/j.isci.2025.113100. eCollection 2025 Aug 15.
Non-contrast CT (NCCT) is widely used in clinical practice and holds potential for large-scale atherosclerosis screening, yet its application in detecting and grading aortic atherosclerosis remains limited. To address this, we propose Aortic-AAE, an automated segmentation system based on a cascaded attention mechanism within the nnU-Net framework. The cascaded attention module enhances feature learning across complex anatomical structures, outperforming existing attention modules. Integrated preprocessing and post-processing ensure anatomical consistency and robustness across multi-center data. Trained on 435 labeled NCCT scans from three centers and validated on 388 independent cases, Aortic-AAE achieved 81.12% accuracy in aortic stenosis classification and 92.37% in Agatston scoring of calcified plaques, surpassing five state-of-the-art models. This study demonstrates the feasibility of using deep learning for accurate detection and grading of aortic atherosclerosis from NCCT, supporting improved diagnostic decisions and enhanced clinical workflows.
非增强CT(NCCT)在临床实践中广泛应用,具有大规模动脉粥样硬化筛查的潜力,但其在检测和分级主动脉粥样硬化方面的应用仍然有限。为解决这一问题,我们提出了Aortic-AAE,这是一种基于nnU-Net框架内的级联注意力机制的自动分割系统。级联注意力模块增强了跨复杂解剖结构的特征学习,优于现有的注意力模块。集成的预处理和后处理确保了多中心数据的解剖一致性和鲁棒性。在来自三个中心的435份标注的NCCT扫描上进行训练,并在388个独立病例上进行验证,Aortic-AAE在主动脉狭窄分类中的准确率达到81.12%,在钙化斑块的阿加斯顿评分中的准确率达到92.37%,超过了五个先进模型。这项研究证明了使用深度学习从NCCT中准确检测和分级主动脉粥样硬化的可行性,有助于改善诊断决策和优化临床工作流程。