Xia Fei, Kim Kyungduk, Eliezer Yaniv, Han SeungYun, Shaughnessy Liam, Gigan Sylvain, Cao Hui
Laboratoire Kastler Brossel, ENS-Universite PSL, CNRS, Sorbonne Université, Collège de France, Paris, France.
Department of Applied Physics, Yale University, New Haven, CT USA.
Nat Photonics. 2024;18(10):1067-1075. doi: 10.1038/s41566-024-01493-0. Epub 2024 Jul 31.
Optical information processing and computing can potentially offer enhanced performance, scalability and energy efficiency. However, achieving nonlinearity-a critical component of computation-remains challenging in the optical domain. Here we introduce a design that leverages a multiple-scattering cavity to passively induce optical nonlinear random mapping with a continuous-wave laser at a low power. Each scattering event effectively mixes information from different areas of a spatial light modulator, resulting in a highly nonlinear mapping between the input data and output pattern. We demonstrate that our design retains vital information even when the readout dimensionality is reduced, thereby enabling optical data compression. This capability allows our optical platforms to offer efficient optical information processing solutions across applications. We demonstrate our design's efficacy across tasks, including classification, image reconstruction, keypoint detection and object detection, all of which are achieved through optical data compression combined with a digital decoder. In particular, high performance at extreme compression ratios is observed in real-time pedestrian detection. Our findings open pathways for novel algorithms and unconventional architectural designs for optical computing.
光学信息处理与计算有望提供更高的性能、可扩展性和能源效率。然而,实现非线性——计算的关键组成部分——在光学领域仍然具有挑战性。在此,我们介绍一种设计,该设计利用多重散射腔,以低功率连续波激光被动诱导光学非线性随机映射。每次散射事件有效地混合来自空间光调制器不同区域的信息,从而在输入数据和输出模式之间产生高度非线性映射。我们证明,即使在读出维度降低时,我们的设计仍能保留重要信息,从而实现光学数据压缩。这种能力使我们的光学平台能够在各种应用中提供高效的光学信息处理解决方案。我们展示了我们的设计在包括分类、图像重建、关键点检测和目标检测等任务中的有效性,所有这些都是通过光学数据压缩结合数字解码器实现的。特别是,在实时行人检测中观察到了极高压缩率下的高性能。我们的研究结果为光学计算的新型算法和非常规架构设计开辟了道路。