Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
PLoS Comput Biol. 2021 Apr 16;17(4):e1008580. doi: 10.1371/journal.pcbi.1008580. eCollection 2021 Apr.
An important question in neuroscience is whether or not we can interpret spontaneous variations in the pattern of correlation between brain areas, which we refer to as functional connectivity or FC, as an index of dynamic neuronal communication in fMRI. That is, can we measure time-varying FC reliably? And, if so, can FC reflect information transfer between brain regions at relatively fast-time scales? Answering these questions in practice requires dealing with the statistical challenge of having high-dimensional data and a comparatively lower number of time points or volumes. A common strategy is to use PCA to reduce the dimensionality of the data, and then apply some model, such as the hidden Markov model (HMM) or a mixture model of Gaussian distributions, to find a set of distinct FC patterns or states. The distinct spatial properties of these FC states together with the time-resolved switching between them offer a flexible description of time-varying FC. In this work, I show that in this context PCA can suffer from systematic biases and loss of sensitivity for the purposes of finding time-varying FC. To get around these issues, I propose a novel variety of the HMM, named HMM-PCA, where the states are themselves PCA decompositions. Since PCA is based on the data covariance, the state-specific PCA decompositions reflect distinct patterns of FC. I show, theoretically and empirically, that fusing dimensionality reduction and time-varying FC estimation in one single step can avoid these problems and outperform alternative approaches, facilitating the quantification of transient communication in the brain.
神经科学中的一个重要问题是,我们是否可以将大脑区域之间相关模式的自发变化解释为 fMRI 中动态神经元通信的指标,我们称之为功能连接或 FC。也就是说,我们能否可靠地测量时变 FC?如果可以,那么 FC 是否可以反映大脑区域之间相对较快的时间尺度上的信息传递?在实践中回答这些问题需要应对具有高维数据和相对较少时间点或体积的统计挑战。一种常见的策略是使用 PCA 来降低数据的维数,然后应用某种模型(例如隐马尔可夫模型(HMM)或高斯分布的混合模型)来找到一组不同的 FC 模式或状态。这些 FC 状态的独特空间特性以及它们之间的时间分辨切换为时变 FC 提供了灵活的描述。在这项工作中,我表明在这种情况下,PCA 可能会受到系统性偏差和灵敏度损失的影响,从而无法找到时变 FC。为了解决这些问题,我提出了一种新的 HMM 变体,称为 HMM-PCA,其中状态本身就是 PCA 分解。由于 PCA 是基于数据协方差的,因此特定于状态的 PCA 分解反映了不同的 FC 模式。我从理论和经验上表明,在单个步骤中融合降维和时变 FC 估计可以避免这些问题,并优于替代方法,从而促进对大脑中瞬态通信的量化。