Suppr超能文献

静态和时变功能连接对人类行为的不同贡献。

Differential contributions of static and time-varying functional connectivity to human behavior.

作者信息

Eichenbaum Adam, Pappas Ioannis, Lurie Daniel, Cohen Jessica R, D'Esposito Mark

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley.

Department of Psychology, University of California, Berkeley.

出版信息

Netw Neurosci. 2021 Feb 1;5(1):145-165. doi: 10.1162/netn_a_00172. eCollection 2021.

Abstract

Measures of human brain functional connectivity acquired during the resting-state track critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity patterns-typically averaged across in traditional analyses-have been considered for their potential neuroscientific relevance. There exists a lack of research on the differences between traditional "static" measures of functional connectivity and newly considered "time-varying" measures as they relate to human behavior. Using functional magnetic resonance imagining (fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, we determined the degree to which each modality captures aspects of personality and cognitive ability. Measures of time-varying functional connectivity were derived by fitting a hidden Markov model. To determine behavioral relationships, static and time-varying connectivity measures were submitted separately to canonical correlation analysis. A single relationship between static functional connectivity and behavior existed, defined by measures of personality and stable behavioral features. However, two relationships were found when using time-varying measures. The first relationship was similar to the static case. The second relationship was unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that time-varying measures of functional connectivity are capable of capturing unique aspects of behavior to which static measures are insensitive.

摘要

在静息状态下获取的人类大脑功能连接测量指标追踪着行为的关键方面。最近,静息状态功能连接模式的波动——在传统分析中通常是平均的——因其潜在的神经科学相关性而受到关注。关于传统的“静态”功能连接测量指标与新考虑的“时变”测量指标在与人类行为相关方面的差异,目前缺乏研究。利用静息状态下收集的功能磁共振成像(fMRI)数据以及在扫描仪外收集的一系列行为测量指标,我们确定了每种方式捕捉人格和认知能力方面的程度。时变功能连接的测量指标是通过拟合一个隐马尔可夫模型得出的。为了确定行为关系,将静态和时变连接测量指标分别提交到典型相关分析中。静态功能连接与行为之间存在一种单一关系,由人格测量指标和稳定的行为特征定义。然而,使用时变测量指标时发现了两种关系。第一种关系与静态情况相似。第二种关系是独特的,由反映逐次试验行为变异性的测量指标定义。我们的研究结果表明,功能连接的时变测量指标能够捕捉静态测量指标不敏感的行为独特方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d8/7935045/889c750e07f7/netn-05-145-g001.jpg

相似文献

1
Differential contributions of static and time-varying functional connectivity to human behavior.
Netw Neurosci. 2021 Feb 1;5(1):145-165. doi: 10.1162/netn_a_00172. eCollection 2021.
3
The role of neural flexibility in cognitive aging.
Neuroimage. 2022 Feb 15;247:118784. doi: 10.1016/j.neuroimage.2021.118784. Epub 2021 Dec 11.
5
Behavioural relevance of spontaneous, transient brain network interactions in fMRI.
Neuroimage. 2021 Apr 1;229:117713. doi: 10.1016/j.neuroimage.2020.117713. Epub 2021 Jan 6.
6
Large-scale intrinsic connectivity is consistent across varying task demands.
PLoS One. 2019 Apr 10;14(4):e0213861. doi: 10.1371/journal.pone.0213861. eCollection 2019.
10
Spatio-temporal dynamics of resting-state brain networks improve single-subject prediction of schizophrenia diagnosis.
Hum Brain Mapp. 2018 Sep;39(9):3663-3681. doi: 10.1002/hbm.24202. Epub 2018 May 10.

引用本文的文献

1
Temporal variability of brain-behavior relationships in fine-scale dynamics of edge time series.
Imaging Neurosci (Camb). 2025 Jan 23;3. doi: 10.1162/imag_a_00443. eCollection 2025.
4
Tangent space functional reconfigurations in individuals at risk for alcohol use disorder.
Netw Neurosci. 2025 Mar 3;9(1):38-60. doi: 10.1162/netn_a_00419. eCollection 2025.
5
Modulatory Neurotransmitter Genotypes Shape Dynamic Functional Connectome Reconfigurations.
J Neurosci. 2025 Mar 5;45(10):e1939242025. doi: 10.1523/JNEUROSCI.1939-24.2025.
6
Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach.
Transl Psychiatry. 2024 Dec 30;14(1):507. doi: 10.1038/s41398-024-03212-3.
7
Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states.
Netw Neurosci. 2024 Dec 10;8(4):1089-1104. doi: 10.1162/netn_a_00390. eCollection 2024.
8
Rapid dynamics of electrophysiological connectome states are heritable.
Netw Neurosci. 2024 Dec 10;8(4):1065-1088. doi: 10.1162/netn_a_00391. eCollection 2024.

本文引用的文献

1
Questions and controversies in the study of time-varying functional connectivity in resting fMRI.
Netw Neurosci. 2020 Feb 1;4(1):30-69. doi: 10.1162/netn_a_00116. eCollection 2020.
2
Resting brain dynamics at different timescales capture distinct aspects of human behavior.
Nat Commun. 2019 May 24;10(1):2317. doi: 10.1038/s41467-019-10317-7.
3
Dynamic mode decomposition of resting-state and task fMRI.
Neuroimage. 2019 Jul 1;194:42-54. doi: 10.1016/j.neuroimage.2019.03.019. Epub 2019 Mar 20.
4
Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep.
Nat Commun. 2019 Mar 4;10(1):1035. doi: 10.1038/s41467-019-08934-3.
5
fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.
6
Spontaneous cognitive processes and the behavioral validation of time-varying brain connectivity.
Netw Neurosci. 2018 Oct 1;2(4):397-417. doi: 10.1162/netn_a_00037. eCollection 2018.
7
Subgraphs of functional brain networks identify dynamical constraints of cognitive control.
PLoS Comput Biol. 2018 Jul 6;14(7):e1006234. doi: 10.1371/journal.pcbi.1006234. eCollection 2018 Jul.
8
Dynamic functional connectivity and its behavioral correlates beyond vigilance.
Neuroimage. 2018 Aug 15;177:1-10. doi: 10.1016/j.neuroimage.2018.04.049. Epub 2018 Apr 25.
9
Understanding the Brain, By Default.
Trends Neurosci. 2018 May;41(5):244-247. doi: 10.1016/j.tins.2018.03.004.
10
Disambiguating brain functional connectivity.
Neuroimage. 2018 Jun;173:540-550. doi: 10.1016/j.neuroimage.2018.01.053. Epub 2018 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验