Suppr超能文献

皮肤病、神经疾病和肺部疾病患者医学诊断影像检查中人工智能应用的经济评估与公平性:系统评价

Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Examinations for Medical Diagnosis in People With Dermatological, Neurological, and Pulmonary Diseases: Systematic Review.

作者信息

Santana Giulia Osório, Couto Rodrigo de Macedo, Loureiro Rafael Maffei, Furriel Brunna Carolinne Rocha Silva, de Paula Luis Gustavo Nascimento, Rother Edna Terezinha, de Paiva Joselisa Péres Queiroz, Correia Lucas Reis

机构信息

PROADI-SUS, Hospital Israelita Albert Einstein, 462 Madre Cabrini Street, Tower A, 5th Floor, São Paulo, SP, 04020-001, Brazil, 55 1197444899.

Department de Imagem, Hospital Israelita Albert Einstein, São Paulo, Brazil.

出版信息

Interact J Med Res. 2025 Aug 13;14:e56240. doi: 10.2196/56240.

Abstract

BACKGROUND

Health care systems around the world face numerous challenges. Recent advances in artificial intelligence (AI) have offered promising solutions, particularly in diagnostic imaging.

OBJECTIVE

This systematic review focused on evaluating the economic feasibility of AI in real-world diagnostic imaging scenarios, specifically for dermatological, neurological, and pulmonary diseases. The central question was whether the use of AI in these diagnostic assessments improves economic outcomes and promotes equity in health care systems.

METHODS

This systematic review has 2 main components, economic evaluation and equity assessment. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool to ensure adherence to best practices in systematic reviews. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), and we followed the PRISMA-E (Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Equity Extension) guidelines for equity. Scientific articles reporting on economic evaluations or equity considerations related to the use of AI-based tools in diagnostic imaging in dermatology, neurology, or pulmonology were included in the study. The search was conducted in the PubMed, Embase, Scopus, and Web of Science databases. Methodological quality was assessed using the following checklists, CHEC (Consensus on Health Economic Criteria) for economic evaluations, EPHPP (Effective Public Health Practice Project) for equity evaluation studies, and Welte for transferability.

RESULTS

The systematic review identified 9 publications within the scope of the research question, with sample sizes ranging from 122 to over 1.3 million participants. The majority of studies addressed economic evaluation (88.9%), with most studies addressing pulmonary diseases (n=6; 66.6%), followed by neurological diseases (n=2; 22.3%), and only 1 (11.1%) study addressing dermatological diseases. These studies had an average quality access of 87.5% on the CHEC checklist. Only 2 studies were found to be transferable to Brazil and other countries with a similar health context. The economic evaluation revealed that 87.5% of studies highlighted the benefits of using AI in dermatology, neurology, and pulmonology, highlighting significant cost-effectiveness outcomes, with the most advantageous being a negative cost-effectiveness ratio of -US $27,580 per QALY (quality-adjusted life year) for melanoma diagnosis, indicating substantial cost savings in this scenario. The only study assessing equity, based on 129,819 radiographic images, identified AI-assisted underdiagnosis, particularly in certain subgroups defined by gender, ethnicity, and socioeconomic status.

CONCLUSIONS

This review underscores the importance of transparency in the description of AI tools and the representativeness of population subgroups to mitigate health disparities. As AI is rapidly being integrated into health care, detailed assessments are essential to ensure that benefits reach all patients, regardless of sociodemographic factors.

摘要

背景

世界各地的医疗保健系统面临着众多挑战。人工智能(AI)的最新进展提供了有前景的解决方案,尤其是在诊断成像方面。

目的

本系统评价聚焦于评估人工智能在实际诊断成像场景中的经济可行性,特别是针对皮肤病、神经病和肺病。核心问题是在这些诊断评估中使用人工智能是否能改善经济结果并促进医疗保健系统的公平性。

方法

本系统评价有两个主要部分,即经济评估和公平性评估。我们使用PRISMA(系统评价和荟萃分析的首选报告项目)工具来确保遵循系统评价的最佳实践。该方案已在PROSPERO(国际系统评价前瞻性注册库)注册,并且我们遵循PRISMA-E(系统评价和荟萃分析的首选报告项目 - 公平性扩展)指南进行公平性评估。纳入研究的是报告与在皮肤病学、神经病学或肺病学诊断成像中使用基于人工智能的工具相关的经济评估或公平性考量的科学文章。检索在PubMed、Embase、Scopus和科学网数据库中进行。使用以下清单评估方法学质量,用于经济评估的CHEC(健康经济标准共识)、用于公平性评估研究的EPHPP(有效公共卫生实践项目)以及用于可转移性的Welte。

结果

该系统评价在研究问题范围内确定了9篇出版物,样本量从122名到超过130万名参与者不等。大多数研究涉及经济评估(88.9%),其中大多数研究涉及肺病(n = 6;66.6%),其次是神经病(n = 2;22.3%),只有1项(11.1%)研究涉及皮肤病。这些研究在CHEC清单上的平均质量得分是87.5%。仅发现2项研究可转移到巴西和其他具有类似健康背景的国家。经济评估显示,87.5%的研究强调了在皮肤病学、神经病学和肺病学中使用人工智能的益处,突出了显著的成本效益结果,最有利的是黑色素瘤诊断的成本效益比为每质量调整生命年(QALY)-27,580美元,表明在这种情况下可大幅节省成本。唯一一项基于129,819张放射影像评估公平性的研究发现了人工智能辅助下的诊断不足,特别是在按性别、种族和社会经济地位定义的某些亚组中。

结论

本评价强调了在描述人工智能工具时保持透明度以及人口亚组代表性对于减轻健康差距的重要性。随着人工智能迅速融入医疗保健,详细评估对于确保所有患者,无论社会人口因素如何,都能受益至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/645e/12349886/0d12e7b6d76c/ijmr-v14-e56240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验