Suppr超能文献

GRACE-ICU:一种基于多模态列线图的重症监护病房老年患者疾病严重程度评估方法。

GRACE-ICU: A multimodal nomogram-based approach for illness severity assessment of older adults in the ICU.

作者信息

Liu Xiaoli, Yeung Wesley, Chen Ziyue, Hao Sicheng, Yang Zhicheng, Sun Xiaowei, Liu Chao, Mao Zhi, Yan Muyang, Yan Wei, Cao Desen, Feng Mengling, Li Deyu, Zhang Zhengbo, Celi Leo Anthony

机构信息

Medical Innovation Research Department, Chinese PLA General Hospital, 100853, Beijing, China.

School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China.

出版信息

NPJ Digit Med. 2025 Aug 13;8(1):519. doi: 10.1038/s41746-025-01875-w.

Abstract

Clinical notes are crucial for patient assessment in the ICU but can be challenging to accurately and objectively analyze in time-constrained situations. We developed the GRACE-ICU model which integrates clinical notes and structured data to rapidly assess critical illness severity in older adults. Based on a cohort from a large U.S. teaching hospital, we fine-tuned a Clinical-Longformer model on pre-ICU notes and combined it with 10 significant structured variables via logistic regression. The receiver operating characteristic curve, calibration curve, decision curve analysis, and 11 metrics were obtained to evaluate its performance in internal, temporal, and external validations when compared with four types of baseline models. Our model outperformed the single-modal models and clinical commonly-used illness scores in both internal and temporal validation for early prediction of hospital mortality and provides interpretable, data-driven recommendations for clinical decision-making, with potential for broader applications. Further prospective studies are needed before clinical use.

摘要

临床记录对于重症监护病房(ICU)的患者评估至关重要,但在时间紧迫的情况下,准确客观地分析可能具有挑战性。我们开发了GRACE-ICU模型,该模型整合临床记录和结构化数据,以快速评估老年人的危重病严重程度。基于美国一家大型教学医院的队列,我们在ICU前记录上对Clinical-Longformer模型进行了微调,并通过逻辑回归将其与10个重要的结构化变量相结合。与四种类型的基线模型相比,获得了受试者工作特征曲线、校准曲线、决策曲线分析和11个指标,以评估其在内部、时间和外部验证中的性能。在早期预测医院死亡率的内部和时间验证中,我们的模型优于单模态模型和临床常用的疾病评分,并为临床决策提供可解释的、数据驱动的建议,具有更广泛应用的潜力。在临床使用之前,还需要进一步的前瞻性研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验