Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA.
Nat Commun. 2020 Nov 26;11(1):6004. doi: 10.1038/s41467-020-19817-3.
Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies. Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with high diagnostic accuracy equal or close to 100 percent to guide treatment options, but this requirement is difficult to meet. Although artificial intelligence (AI) helps to reduce the labor of reading pathologic slides, diagnostic accuracy has not reached a clinically usable level. Establishment of an AI model often demands big datasets and an ability to handle large variations in sample preparation and image collection. Here, we establish a highly accurate deep learning platform, consisting of multiple convolutional neural networks, to classify pathologic images by using smaller datasets. We analyze human diffuse large B-cell lymphoma (DLBCL) and non-DLBCL pathologic images from three hospitals separately using AI models, and obtain a diagnostic rate of close to 100 percent (100% for hospital A, 99.71% for hospital B and 100% for hospital C). The technical variability introduced by slide preparation and image collection reduces AI model performance in cross-hospital tests, but the 100% diagnostic accuracy is maintained after its elimination. It is now clinically practical to utilize deep learning models for diagnosis of DLBCL and ultimately other human hematopoietic malignancies.
诊断组织病理学是诊断血液系统恶性肿瘤的金标准。病理诊断需要对大量组织切片进行费力的阅读,具有很高的诊断准确性,准确率达到或接近 100%,以指导治疗方案的选择,但这一要求难以实现。尽管人工智能(AI)有助于减轻阅读病理切片的劳动强度,但诊断准确性尚未达到临床可用水平。建立 AI 模型通常需要大数据集,并且需要具备处理样本制备和图像采集方面的大量差异的能力。在这里,我们建立了一个高度精确的深度学习平台,由多个卷积神经网络组成,用于通过使用较小的数据集来对病理图像进行分类。我们使用 AI 模型分别对来自三家医院的人类弥漫性大 B 细胞淋巴瘤(DLBCL)和非 DLBCL 病理图像进行分析,获得了接近 100%的诊断率(医院 A 为 100%,医院 B 为 99.71%,医院 C 为 100%)。幻灯片制备和图像采集带来的技术差异降低了跨医院测试中 AI 模型的性能,但在消除这些差异后,诊断准确率仍保持在 100%。现在,利用深度学习模型来诊断 DLBCL 乃至最终诊断其他人类血液系统恶性肿瘤已经具有临床实用性。
Cochrane Database Syst Rev. 2023-11-15
Cochrane Database Syst Rev. 2024-10-17
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2021-9-13
Ultrasound Med Biol. 2025-6-28
Diagnostics (Basel). 2025-8-4
ScientificWorldJournal. 2025-5-18
J Med Internet Res. 2025-2-14
Comput Struct Biotechnol J. 2024-12-30
Nat Med. 2019-9
Ann Clin Lab Sci. 2019-3
Science. 2017-7-7