文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习诊断平台可用于弥漫性大 B 细胞淋巴瘤,在多家医院均具有较高的准确性。

A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals.

机构信息

Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.

Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, MA, USA.

出版信息

Nat Commun. 2020 Nov 26;11(1):6004. doi: 10.1038/s41467-020-19817-3.


DOI:10.1038/s41467-020-19817-3
PMID:33244018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7691991/
Abstract

Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies. Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with high diagnostic accuracy equal or close to 100 percent to guide treatment options, but this requirement is difficult to meet. Although artificial intelligence (AI) helps to reduce the labor of reading pathologic slides, diagnostic accuracy has not reached a clinically usable level. Establishment of an AI model often demands big datasets and an ability to handle large variations in sample preparation and image collection. Here, we establish a highly accurate deep learning platform, consisting of multiple convolutional neural networks, to classify pathologic images by using smaller datasets. We analyze human diffuse large B-cell lymphoma (DLBCL) and non-DLBCL pathologic images from three hospitals separately using AI models, and obtain a diagnostic rate of close to 100 percent (100% for hospital A, 99.71% for hospital B and 100% for hospital C). The technical variability introduced by slide preparation and image collection reduces AI model performance in cross-hospital tests, but the 100% diagnostic accuracy is maintained after its elimination. It is now clinically practical to utilize deep learning models for diagnosis of DLBCL and ultimately other human hematopoietic malignancies.

摘要

诊断组织病理学是诊断血液系统恶性肿瘤的金标准。病理诊断需要对大量组织切片进行费力的阅读,具有很高的诊断准确性,准确率达到或接近 100%,以指导治疗方案的选择,但这一要求难以实现。尽管人工智能(AI)有助于减轻阅读病理切片的劳动强度,但诊断准确性尚未达到临床可用水平。建立 AI 模型通常需要大数据集,并且需要具备处理样本制备和图像采集方面的大量差异的能力。在这里,我们建立了一个高度精确的深度学习平台,由多个卷积神经网络组成,用于通过使用较小的数据集来对病理图像进行分类。我们使用 AI 模型分别对来自三家医院的人类弥漫性大 B 细胞淋巴瘤(DLBCL)和非 DLBCL 病理图像进行分析,获得了接近 100%的诊断率(医院 A 为 100%,医院 B 为 99.71%,医院 C 为 100%)。幻灯片制备和图像采集带来的技术差异降低了跨医院测试中 AI 模型的性能,但在消除这些差异后,诊断准确率仍保持在 100%。现在,利用深度学习模型来诊断 DLBCL 乃至最终诊断其他人类血液系统恶性肿瘤已经具有临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/1ea8e6bd12bd/41467_2020_19817_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/b257f63a466d/41467_2020_19817_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/f651d1f194d1/41467_2020_19817_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/5c84f5266d0b/41467_2020_19817_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/1ea8e6bd12bd/41467_2020_19817_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/b257f63a466d/41467_2020_19817_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/f651d1f194d1/41467_2020_19817_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/5c84f5266d0b/41467_2020_19817_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/7691991/1ea8e6bd12bd/41467_2020_19817_Fig4_HTML.jpg

相似文献

[1]
A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals.

Nat Commun. 2020-11-26

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[8]
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.

Cochrane Database Syst Rev. 2021-9-13

[9]
Artificial intelligence-based prediction of organ involvement in Sjogren's syndrome using labial gland biopsy whole-slide images.

Clin Rheumatol. 2025-6-5

[10]
Novel Artificial Intelligence-Driven Infant Meningitis Screening From High-Resolution Ultrasound Imaging.

Ultrasound Med Biol. 2025-6-28

引用本文的文献

[1]
Histological Image Classification Between Follicular Lymphoma and Reactive Lymphoid Tissue Using Deep Learning and Explainable Artificial Intelligence (XAI).

Cancers (Basel). 2025-7-22

[2]
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma.

Diagnostics (Basel). 2025-8-4

[3]
A novel hybrid convolutional and transformer network for lymphoma classification.

Sci Rep. 2025-7-19

[4]
Advancements in Hematologic Malignancy Detection: A Comprehensive Survey of Methodologies and Emerging Trends.

ScientificWorldJournal. 2025-5-18

[5]
Leukaemia Stem Cells and Their Normal Stem Cell Counterparts Are Morphologically Distinguishable by Artificial Intelligence.

J Cell Mol Med. 2025-5

[6]
Artificial Intelligence in Lymphoma Histopathology: Systematic Review.

J Med Internet Res. 2025-2-14

[7]
Context aware machine learning techniques for brain tumor classification and detection - A review.

Heliyon. 2025-1-13

[8]
Machine learning methods for histopathological image analysis: Updates in 2024.

Comput Struct Biotechnol J. 2024-12-30

[9]
Weakly supervised pathological differentiation of primary central nervous system lymphoma and glioblastoma on multi-site whole slide images.

J Med Imaging (Bellingham). 2025-1

[10]
Artificial intelligence in cytopathological applications for cancer: a review of accuracy and analytic validity.

Eur J Med Res. 2024-11-19

本文引用的文献

[1]
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.

Nat Med. 2020-1-6

[2]
International evaluation of an AI system for breast cancer screening.

Nature. 2020-1-1

[3]
Augmented reality microscopes for cancer histopathology.

Nat Med. 2019-9

[4]
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.

Nat Med. 2019-7-15

[5]
Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning.

Ann Clin Lab Sci. 2019-3

[6]
Automated deep-neural-network surveillance of cranial images for acute neurologic events.

Nat Med. 2018-8-13

[7]
Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images.

EBioMedicine. 2017-12-28

[8]
The scientists' apprentice.

Science. 2017-7-7

[9]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[10]
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA. 2016-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索