Soto Karen M, Gódinez-Oviedo Angelica, Romo-Pérez Adriana, Mendoza Sandra, López-Romero José Mauricio, Torres-Delgado Gerardo, Pineda-Piñón Jorge, Apátiga-Castro Luis M, de Jesús Pérez Bueno José, Manzano-Ramírez Alejandro
Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico.
Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
Int J Mol Sci. 2025 Aug 7;26(15):7645. doi: 10.3390/ijms26157645.
Green synthesis of gold nanoparticles (AuNPs) provides a significantly eco-friendly and low-impact counterpart to conventional chemical methods. In the present study, we synthesized gold nanoparticles using (P-AuNPs) aqueous extract as a reducing and stabilizing agent. The obtained nanoparticles were then stabilized by another biocompatible agent, the chiral amino acids L-cysteine (L-Cys-AuNPs) and D-cysteine (D-Cys-AuNPs), to estimate the potential of the surface modification for enhancing AuNPs surface chemistry and antimicrobial action. The synthesized gold nanoparticles were confirmed by UV-Vis spectroscopy, FTIR, XRD, and circular dichroism to validate their formation, crystalline structure, surface properties, and chirality. Physicochemical characterization confirmed the formation of crystalline AuNPs with size and morphology modulated by chiral functionalization. TEM and DLS analyses showed that L-cysteine-functionalized AuNPs were smaller and more uniform, while FTIR and circular dichroism spectroscopy confirmed surface binding and the induction of optical activity, respectively. L-Cys-AuNPs exhibited the highest antimicrobial efficacy against a broad spectrum of microorganisms, including , , , , , and, notably, . L-Cys-AuNPs showed the lowest MIC and MBC values, highlighting the synergistic effect of chirality on biological performance. These findings suggest that L-cysteine surface engineering significantly enhances the therapeutic potential of AuNPs, particularly in combating drug-resistant fungal pathogens such as . This research paves the way for the development of next-generation antimicrobial agents, reinforcing the relevance of green nanotechnology in the field of materials science and nanotechnology.
金纳米粒子(AuNPs)的绿色合成提供了一种比传统化学方法更具生态友好性且影响较小的方法。在本研究中,我们使用(P-AuNPs)水提取物作为还原剂和稳定剂来合成金纳米粒子。然后,通过另一种生物相容性试剂,即手性氨基酸L-半胱氨酸(L-Cys-AuNPs)和D-半胱氨酸(D-Cys-AuNPs)对所得纳米粒子进行稳定化处理,以评估表面修饰对增强AuNPs表面化学性质和抗菌作用的潜力。通过紫外-可见光谱、傅里叶变换红外光谱、X射线衍射和圆二色性对合成的金纳米粒子进行了确认,以验证其形成、晶体结构、表面性质和手性。物理化学表征证实了结晶AuNPs的形成,其尺寸和形态受手性官能化的调节。透射电子显微镜(TEM)和动态光散射(DLS)分析表明,L-半胱氨酸功能化的AuNPs更小且更均匀,而傅里叶变换红外光谱和圆二色性光谱分别证实了表面结合和光学活性的诱导。L-Cys-AuNPs对包括、、、、和(尤其值得注意的是)在内的多种微生物表现出最高的抗菌功效。L-Cys-AuNPs显示出最低的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)值,突出了手性对生物学性能的协同作用。这些发现表明,L-半胱氨酸表面工程显著增强了AuNPs的治疗潜力,特别是在对抗诸如等耐药真菌病原体方面。这项研究为下一代抗菌剂的开发铺平了道路,加强了绿色纳米技术在材料科学和纳米技术领域的相关性。