Division of Computer Science and Engineering, Sunmoon University, Asan 31460, Republic of Korea.
William F. Harrah College of Hotel Administration, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
Int J Environ Res Public Health. 2024 Sep 4;21(9):1178. doi: 10.3390/ijerph21091178.
Obesity recognition in adolescents is a growing concern. This study presents a deep learning-based obesity identification framework that integrates smartphone inertial measurements with deep learning models to address this issue. Utilizing data from accelerometers, gyroscopes, and rotation vectors collected via a mobile health application, we analyzed gait patterns for obesity indicators. Our framework employs three deep learning models: convolutional neural networks (CNNs), long-short-term memory network (LSTM), and a hybrid CNN-LSTM model. Trained on data from 138 subjects, including both normal and obese individuals, and tested on an additional 35 subjects, the hybrid model achieved the highest accuracy of 97%, followed by the LSTM model at 96.31% and the CNN model at 95.81%. Despite the promising outcomes, the study has limitations, such as a small sample and the exclusion of individuals with distorted gait. In future work, we aim to develop more generalized models that accommodate a broader range of gait patterns, including those with medical conditions.
青少年肥胖识别是一个日益受到关注的问题。本研究提出了一种基于深度学习的肥胖识别框架,该框架将智能手机惯性测量与深度学习模型相结合,以解决这一问题。我们利用来自加速度计、陀螺仪和通过移动健康应用程序收集的旋转矢量的数据,分析了肥胖指标的步态模式。我们的框架采用了三种深度学习模型:卷积神经网络(CNN)、长短时记忆网络(LSTM)和混合 CNN-LSTM 模型。该框架在 138 名包括正常和肥胖个体的受试者的数据上进行训练,并在另外 35 名受试者的数据上进行测试,混合模型的准确率最高,为 97%,其次是 LSTM 模型为 96.31%,CNN 模型为 95.81%。尽管取得了有希望的结果,但该研究仍存在一些局限性,例如样本量小和排除步态异常的个体。在未来的工作中,我们旨在开发更通用的模型,以适应更广泛的步态模式,包括那些有医疗条件的步态模式。