Liu Xuan, Du Wei, Tang Haibao, Gu Yingjian, Li Zhibang, Fu Xiaoyang
College of Computer Science and Technology, Jilin University, Changchun, China.
School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, China.
Front Mol Biosci. 2025 Jul 30;12:1623620. doi: 10.3389/fmolb.2025.1623620. eCollection 2025.
Accurate molecular property prediction is fundamental to modern drug discovery and materials design. However, prevailing computational methods are often insufficient, as they rely on single-granularity structural representations that fail to capture the hierarchical complexity of molecular systems. To address this challenge, we propose a new approach to molecular representation learning that incorporates structural information across multiple scales. We design DFusMol (Dual Fusion with Global and Local Attention), a novel framework inspired by multi-modal learning. DFusMol employs graph encoders to capture features from both atomic-level molecular graphs and motif-level graphs derived from chemical rules. A customized global-local attention mechanism then blends these diverse features to build comprehensive molecular representations. Experiments on nine public benchmark datasets reveal that DFusMol delivers top-tier predictive performance across all tasks, outperforming state-of-the-art self-supervised learning models on six of them. By effectively integrating atomic- and motif-level information, DFusMol provides an innovative and efficient solution for molecular property prediction, enhancing representation learning methodologies and demonstrating strong potential for applications in drug design and lead compound screening.
准确的分子性质预测是现代药物发现和材料设计的基础。然而,现有的计算方法往往并不充分,因为它们依赖于单一粒度的结构表示,无法捕捉分子系统的层次复杂性。为应对这一挑战,我们提出了一种新的分子表示学习方法,该方法整合了多个尺度的结构信息。我们设计了DFusMol(具有全局和局部注意力的双重融合),这是一个受多模态学习启发的新颖框架。DFusMol采用图编码器从原子级分子图和源自化学规则的基序级图中提取特征。然后,一种定制的全局-局部注意力机制将这些不同的特征融合在一起,以构建全面的分子表示。在九个公共基准数据集上进行的实验表明,DFusMol在所有任务中都具有顶级的预测性能,在其中六个数据集上优于当前最先进的自监督学习模型。通过有效地整合原子级和基序级信息,DFusMol为分子性质预测提供了一种创新且高效的解决方案,改进了表示学习方法,并在药物设计和先导化合物筛选中展现出强大的应用潜力。