Suppr超能文献

编辑临床轮廓对胶质母细胞瘤大体肿瘤体积深度学习分割准确性的影响。

The effect of editing clinical contours on deep-learning segmentation accuracy of the gross tumor volume in glioblastoma.

作者信息

Hochreuter Kim M, Ren Jintao, Nijkamp Jasper, Korreman Stine S, Lukacova Slávka, Kallehauge Jesper F, Trip Anouk K

机构信息

Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.

Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

出版信息

Phys Imaging Radiat Oncol. 2024 Aug 5;31:100620. doi: 10.1016/j.phro.2024.100620. eCollection 2024 Jul.

Abstract

BACKGROUND AND PURPOSE

Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a single-observer edited version of the same GTVs.

MATERIALS AND METHODS

The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C), and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging data. The dataset was split into 207 cases for training/validation and 52 for testing.GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using Surface Dice with 1 mm tolerance (sDSC). We also evaluated model performance with respect to extent of resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1, T1C). A Wilcoxon test was used for significance testing.

RESULTS

The median (range) sDSC of the clinical-GTV-model and edited-GTV-model both evaluated with the edited contours, was 0.76 (0.43-0.94) vs. 0.92 (0.60-0.98) respectively (p < 0.001). sDSC was not significantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as good as use of imaging combinations.

CONCLUSIONS

High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs significantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly accurate using only T1C.

摘要

背景与目的

放射治疗中用于大体肿瘤体积(GTV)分割的深度学习(DL)模型通常基于临床勾画,而临床勾画存在观察者间差异。本研究的目的是比较基于临床胶质母细胞瘤GTV的DL模型与基于同一GTV的单观察者编辑版本的模型的性能。

材料与方法

数据集包括2012年至2019年在单一机构接受术后放疗的259例胶质母细胞瘤患者的影像数据(计算机断层扫描(CT)、T1、增强T1(T1C)和液体衰减反转恢复(FLAIR))。使用所有影像数据对临床GTV进行编辑。数据集分为207例用于训练/验证,52例用于测试。GTV分割模型(nnUNet)分别在临床和编辑后的GTV上进行训练,并使用1毫米容差的表面骰子系数(sDSC)进行比较。我们还评估了模型在切除范围(EOR)以及不同影像组合(T1C/T1/FLAIR/CT、T1C/FLAIR/CT、T1C/FLAIR、T1C/CT、T1C/T1、T1C)方面的性能。采用Wilcoxon检验进行显著性检验。

结果

临床GTV模型和编辑后GTV模型均使用编辑后的轮廓进行评估,其sDSC中位数(范围)分别为0.76(0.43 - 0.94)和0.92(0.60 - 0.98)(p < 0.001)。活检、部分切除和完全切除患者之间的sDSC无显著差异。仅使用T1C作为单一输入的表现与使用影像组合的表现一样好。

结论

DL模型获得了较高的分割精度。临床GTV的编辑显著提高了DL性能,且效应量相关。DL性能在EOR方面稳健,仅使用T1C时高度准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10bb/11364127/a9f065ffcc89/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验