Suppr超能文献

通过使用循环回归预测时间角度进行CT造影剂阶段识别。

CT CONTRAST PHASE IDENTIFICATION BY PREDICTING THE TEMPORAL ANGLE USING CIRCULAR REGRESSION.

作者信息

Su Dingjie, Van Schaik Katherine D, Remedios Lucas W, Li Thomas, Maldonado Fabien, Sandler Kim L, Dawant Benoit M, Landman Bennett A

机构信息

Vanderbilt University Department of Computer Science, Nashville, TN, USA.

Vanderbilt University Department of Electrical and Computer Engineering, Nashville, TN, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980877. Epub 2025 May 12.

Abstract

Contrast enhancement is widely used in computed tomography (CT) scans, where radiocontrast agents circulate through the bloodstream and accumulate in the vasculature, creating visual contrast between blood vessels and surrounding tissues. This work introduces a technique to predict the timing of contrast in a CT scan, a key factor influencing the contrast effect, using circular regression models. Specifically, we represent the contrast timing as unit vectors on a circle and employ 2D convolutional neural networks to predict it based on predefined anchor time points. Unlike previous methods that treat contrast timing as discrete phases, our approach is the first method that views it as a continuous variable, offering a more fine-grained understanding of contrast differences, particularly in relation to patient-specific vascular effects. We train the model on 877 CT scans and test it on 112 scans from different subjects, achieving a classification accuracy of 93.8%, which is similar to state-of-the-art results reported in the literature. We compare our method to other 2D and 3D classification-based approaches, demonstrating that our regression model have overall better performance than the classification models. Additionally, we explore the relationship between contrast timing and the anatomical positions of CT slices, aiming to leverage positional information to improve the prediction accuracy, which is a promising direction that has not been studied.

摘要

对比增强在计算机断层扫描(CT)中被广泛应用,在CT扫描中,放射性对比剂在血液中循环并在脉管系统中积聚,从而在血管和周围组织之间产生视觉对比。这项工作引入了一种技术,使用循环回归模型来预测CT扫描中对比剂的注入时间,这是影响对比效果的一个关键因素。具体来说,我们将对比剂注入时间表示为圆上的单位向量,并使用二维卷积神经网络基于预定义的锚定时间点来预测它。与之前将对比剂注入时间视为离散阶段的方法不同,我们的方法是第一种将其视为连续变量的方法,能更细致地理解对比差异,特别是与患者特定的血管效应相关的差异。我们在877次CT扫描上训练模型,并在来自不同受试者的112次扫描上进行测试,分类准确率达到93.8%,这与文献中报道的最先进结果相似。我们将我们的方法与其他基于二维和三维分类的方法进行比较,证明我们的回归模型总体上比分类模型具有更好的性能。此外,我们探索对比剂注入时间与CT切片解剖位置之间的关系,旨在利用位置信息提高预测准确率,这是一个尚未被研究的有前景的方向。

相似文献

3
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

2
Body Part Regression With Self-Supervision.基于自监督的身体部位回归。
IEEE Trans Med Imaging. 2021 May;40(5):1499-1507. doi: 10.1109/TMI.2021.3058281. Epub 2021 Apr 30.
4
Stochastic tissue window normalization of deep learning on computed tomography.计算机断层扫描深度学习的随机组织窗口归一化
J Med Imaging (Bellingham). 2019 Oct;6(4):044005. doi: 10.1117/1.JMI.6.4.044005. Epub 2019 Nov 20.
5
Squeeze-and-Excitation Networks.挤压激励网络。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023. doi: 10.1109/TPAMI.2019.2913372. Epub 2019 Apr 29.
8
Late phase allergic reaction to a CT contrast medium (iotrolan).
J Dermatol. 1991 Sep;18(9):528-31. doi: 10.1111/j.1346-8138.1991.tb03127.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验