Suppr超能文献

基于自监督的身体部位回归。

Body Part Regression With Self-Supervision.

出版信息

IEEE Trans Med Imaging. 2021 May;40(5):1499-1507. doi: 10.1109/TMI.2021.3058281. Epub 2021 Apr 30.

Abstract

Body part regression is a promising new technique that enables content navigation through self-supervised learning. Using this technique, the global quantitative spatial location for each axial view slice is obtained from computed tomography (CT). However, it is challenging to define a unified global coordinate system for body CT scans due to the large variabilities in image resolution, contrasts, sequences, and patient anatomy. Therefore, the widely used supervised learning approach cannot be easily deployed. To address these concerns, we propose an annotation-free method named blind-unsupervised-supervision network (BUSN). The contributions of the work are in four folds: (1) 1030 multi-center CT scans are used in developing BUSN without any manual annotation. (2) the proposed BUSN corrects the predictions from unsupervised learning and uses the corrected results as the new supervision; (3) to improve the consistency of predictions, we propose a novel neighbor message passing (NMP) scheme that is integrated with BUSN as a statistical learning based correction; and (4) we introduce a new pre-processing pipeline with inclusion of the BUSN, which is validated on 3D multi-organ segmentation. The proposed method is trained on 1,030 whole body CT scans (230,650 slices) from five datasets, as well as an independent external validation cohort with 100 scans. From the body part regression results, the proposed BUSN achieved significantly higher median R-squared score (=0.9089) than the state-of-the-art unsupervised method (=0.7153). When introducing BUSN as a preprocessing stage in volumetric segmentation, the proposed pre-processing pipeline using BUSN approach increases the total mean Dice score of the 3D abdominal multi-organ segmentation from 0.7991 to 0.8145.

摘要

体部回归是一种很有前途的新技术,它可以通过自监督学习来实现内容导航。使用该技术,可以从计算机断层扫描(CT)中获得每个轴向视图切片的全局定量空间位置。然而,由于图像分辨率、对比度、序列和患者解剖结构的巨大变化,为身体 CT 扫描定义统一的全局坐标系具有挑战性。因此,广泛使用的监督学习方法不易部署。针对这些问题,我们提出了一种名为无监督监督网络(BUSN)的无注释方法。这项工作的贡献有四点:(1)在开发 BUSN 时使用了 1030 个多中心 CT 扫描,没有任何手动注释。(2)所提出的 BUSN 纠正了无监督学习的预测,并将校正结果用作新的监督;(3)为了提高预测的一致性,我们提出了一种新颖的邻居消息传递(NMP)方案,该方案与 BUSN 集成作为基于统计学习的校正;(4)我们引入了一种新的预处理管道,包括 BUSN,并在 3D 多器官分割上进行了验证。该方法在五个数据集的 1030 个全身 CT 扫描(230650 个切片)以及 100 个扫描的独立外部验证队列上进行了训练。从体部回归结果来看,所提出的 BUSN 实现的中位数 R-squared 得分(=0.9089)明显高于最先进的无监督方法(=0.7153)。当将 BUSN 作为体积分割的预处理阶段引入时,使用 BUSN 方法的预处理管道将 3D 腹部多器官分割的总平均 Dice 分数从 0.7991 提高到 0.8145。

相似文献

1
Body Part Regression With Self-Supervision.基于自监督的身体部位回归。
IEEE Trans Med Imaging. 2021 May;40(5):1499-1507. doi: 10.1109/TMI.2021.3058281. Epub 2021 Apr 30.

引用本文的文献

4
Stratification of Lung Cancer Risk with Thoracic Imaging Phenotypes.利用胸部影像表型对肺癌风险进行分层
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654018. Epub 2023 Apr 11.
5
Semantic-Aware Contrastive Learning for Multi-Object Medical Image Segmentation.基于语义感知对比学习的多目标医学图像分割。
IEEE J Biomed Health Inform. 2023 Sep;27(9):4444-4453. doi: 10.1109/JBHI.2023.3285230. Epub 2023 Sep 6.
8
Multi-contrast computed tomography healthy kidney atlas.多对比度计算机断层扫描健康肾图谱。
Comput Biol Med. 2022 Jul;146:105555. doi: 10.1016/j.compbiomed.2022.105555. Epub 2022 Apr 26.

本文引用的文献

2
3D whole brain segmentation using spatially localized atlas network tiles.使用空间局部化图谱网络瓦片进行 3D 全脑分割。
Neuroimage. 2019 Jul 1;194:105-119. doi: 10.1016/j.neuroimage.2019.03.041. Epub 2019 Mar 23.
9
Scanning protocols for multislice CT scanners.多层螺旋CT扫描仪的扫描协议。
Br J Radiol. 2004;77 Spec No 1:S2-9. doi: 10.1259/bjr/28755689.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验