Yan Yunyun, Arrey James L S, Zhang Rui, Colenbrander-Nelson Tara, Twible Lauren E, Poulain Alexandre, Warren Lesley A
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada; MNR Key Laboratory of Mine Ecological Effects and Systematic Restoration, China Institute of Geo-Environment Monitoring, Beijing 100081, PR China.
Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
J Hazard Mater. 2025 Sep 15;496:139383. doi: 10.1016/j.jhazmat.2025.139383. Epub 2025 Jul 28.
Acidification and dissolved oxygen (DO) depletion in mining-affected water bodies are global environmental challenges associated with the oxidation of reduced S species (S), including sulfide and sulfur oxidation intermediate compounds (SOI). The recent detection of diverse SOI species in tailings impoundments and pit lakes highlights overlooked risks from microbial S cycling, that are difficult to geochemically quantify due to rapid S turnover. This study characterizes sulfur-reducing bacteria (SRB; capable of sulfate and/or SOI reduction), in Base Mine Lake (BML), the first oil sands tailings reclamation end pit lake. Integrating field physicochemical, geochemical, 16S rRNA sequencing, and metagenomic results, we identified seasonal and DO-dependent variations in SRB communities that were associated with the spring-summer physicochemical and [S] changes. Specifically, late summer stratified BML water column evidenced DO-dependent SRB zonation, initiating with strictly anaerobic sulfate-reducing bacteria in bottom anoxic waters, and SRB SOI-reduction/disproportionation processes extending S impacts into the suboxic regions. The identification of SRB communities with diverse S reduction/disproportionation capabilities reveal the escalating environmental implications of annually recurrent and expanding sulfur cycling to BML water DO persistence. Findings here inform future oil sands tailings reclamation regulatory assessment, and provide essential insights for S biogeochemical cycling and outcomes in mining-impacted water contexts.
受采矿影响的水体酸化和溶解氧(DO)消耗是与包括硫化物和硫氧化中间化合物(SOI)在内的还原态硫物种(S)氧化相关的全球环境挑战。最近在尾矿库和矿坑湖发现的多种SOI物种凸显了微生物硫循环中被忽视的风险,由于硫的快速周转,这些风险难以通过地球化学方法进行量化。本研究对基础矿湖(BML)中的硫酸盐还原菌(SRB;能够还原硫酸盐和/或SOI)进行了表征,BML是第一个油砂尾矿复垦终了矿坑湖。综合现场物理化学、地球化学、16S rRNA测序和宏基因组学结果,我们确定了SRB群落的季节性和与溶解氧相关的变化,这些变化与春夏季节的物理化学和[S]变化有关。具体而言,夏末分层的BML水柱显示出与溶解氧相关的SRB分区,始于底部缺氧水域中严格厌氧的硫酸盐还原菌,并且SRB的SOI还原/歧化过程将硫的影响扩展到亚缺氧区域。具有不同硫还原/歧化能力的SRB群落的识别揭示了每年循环且不断扩大的硫循环对BML水体溶解氧持久性的环境影响不断升级。此处的研究结果为未来油砂尾矿复垦监管评估提供了参考,并为采矿影响水体环境中的硫生物地球化学循环及结果提供了重要见解。