Suppr超能文献

科威特的城市形态与气候脆弱性评估:利用深度神经网络增强马尔可夫链模型对2050年和2100年进行的时空预测分析

Urban morphology and climate vulnerability assessment in Kuwait: A spatio-temporal predictive analysis utilizing deep neural network-enhanced markov chain models for 2050 and 2100.

作者信息

Al-Shaar Walid, Lehmann Xavier, Saad Noha, Elmazi Gremina, Al-Shaar Mohamad, Tohme Christelle

机构信息

College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait.

LVMT (Laboratoire Ville-Mobilité-Transport), Unité commune Université Gustave Eiffel and École des Ponts, Champs-sur-Marne, Paris, France.

出版信息

PLoS One. 2025 Aug 18;20(8):e0318604. doi: 10.1371/journal.pone.0318604. eCollection 2025.

Abstract

Rapid urban growth in Kuwait creates challenges for adapting to climate change. This study investigates the spatio-temporal dynamics of urban growth in Kuwait and assesses its climate change vulnerability using a Multi-Layer Perceptron Markov Chain Model (MLPMCM) to forecast land use and land cover (LULC) changes for the years 2050 and 2100. Utilizing historical LULC data from 1985, 2005, and 2022, along with various spatial drivers, the research predicts urban expansion patterns for 2050 and 2100. The model achieved high accuracy in predictions, indicating that proximity to coastlines, road networks, and commercial areas are the primary drivers of urban growth in Kuwait. The study projects significant urban expansion, particularly in North-Northwestern and South-Southwestern regions, with urban areas expected to increase from 819 km² in 2022-1,893 km² by 2100. Climate vulnerability analysis, based on RCP 8.5 scenario projections, is assessed using the cross-referencing approach and it suggests temperature increases of up to 17°C in urban and coastal regions by 2100. The research highlights the complex interplay between urban growth and climate change, emphasizing the need for adaptive urban planning strategies. This study contributes to the understanding of urban growth dynamics in rapidly developing, oil-rich nations with arid climates, offering insights for sustainable urban development and climate resilience in Kuwait and similar contexts.

摘要

科威特快速的城市增长给适应气候变化带来了挑战。本研究调查了科威特城市增长的时空动态,并使用多层感知器马尔可夫链模型(MLPMCM)评估其气候变化脆弱性,以预测2050年和2100年的土地利用和土地覆盖(LULC)变化。利用1985年、2005年和2022年的历史LULC数据以及各种空间驱动因素,该研究预测了2050年和2100年的城市扩张模式。该模型在预测中取得了高精度,表明靠近海岸线、道路网络和商业区是科威特城市增长的主要驱动因素。该研究预计城市将大幅扩张,特别是在北-西北部和南-西南部地区,到2100年城市面积预计将从2022年的819平方公里增加到1893平方公里。基于RCP 8.5情景预测的气候脆弱性分析采用交叉参考方法进行评估,结果表明到2100年城市和沿海地区的气温将上升高达17°C。该研究突出了城市增长与气候变化之间复杂的相互作用,强调了适应性城市规划策略的必要性。本研究有助于理解气候干旱、快速发展且石油资源丰富国家的城市增长动态,为科威特及类似环境下的可持续城市发展和气候适应能力提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d11/12360559/8cf59756a5d4/pone.0318604.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验